Cargando…
Biomedical relation extraction via knowledge-enhanced reading comprehension
BACKGROUND: In biomedical research, chemical and disease relation extraction from unstructured biomedical literature is an essential task. Effective context understanding and knowledge integration are two main research problems in this task. Most work of relation extraction focuses on classification...
Autores principales: | Chen, Jing, Hu, Baotian, Peng, Weihua, Chen, Qingcai, Tang, Buzhou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8734165/ https://www.ncbi.nlm.nih.gov/pubmed/34991458 http://dx.doi.org/10.1186/s12859-021-04534-5 |
Ejemplares similares
-
Drug knowledge discovery via multi-task learning and pre-trained models
por: Li, Dongfang, et al.
Publicado: (2021) -
Document-level medical relation extraction via edge-oriented graph neural network based on document structure and external knowledge
por: Li, Tao, et al.
Publicado: (2021) -
Drug-Drug Interaction Extraction via Convolutional Neural Networks
por: Liu, Shengyu, et al.
Publicado: (2016) -
Evaluating Word Representation Features in Biomedical Named Entity Recognition Tasks
por: Tang, Buzhou, et al.
Publicado: (2014) -
Feature Engineering for Drug Name Recognition in Biomedical Texts: Feature Conjunction and Feature Selection
por: Liu, Shengyu, et al.
Publicado: (2015)