Cargando…
A pilot study of machine-learning based automated planning for primary brain tumours
PURPOSE: High-quality radiotherapy (RT) planning for children and young adults with primary brain tumours is essential to minimize the risk of late treatment effects. The feasibility of using automated machine-learning (ML) to aid RT planning in this population has not previously been studied. METHO...
Autores principales: | Tsang, Derek S., Tsui, Grace, McIntosh, Chris, Purdie, Thomas, Bauman, Glenn, Dama, Hitesh, Laperriere, Normand, Millar, Barbara-Ann, Shultz, David B., Ahmed, Sameera, Khandwala, Mohammad, Hodgson, David C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8734345/ https://www.ncbi.nlm.nih.gov/pubmed/34991634 http://dx.doi.org/10.1186/s13014-021-01967-3 |
Ejemplares similares
-
RONC-03. NEUROCOGNITIVE CHANGES AFTER RADIATION FOR PEDIATRIC BRAIN TUMOURS: WHICH BRAIN SUBSTRUCTURES ARE MOST IMPORTANT?
por: Tsang, Derek S, et al.
Publicado: (2020) -
Short Course Hypofractionated Radiotherapy for Frail or Elderly Patients With Meningioma
por: Sarhan, Nasim, et al.
Publicado: (2020) -
Estimating Potential Benefits to Neurocognition with Proton Therapy in Adults with Brain Tumors
por: Petruccelli, Mariana, et al.
Publicado: (2023) -
Neurocognitive Performance in Adults Treated With Radiation for a Primary Brain Tumor
por: Tsang, Derek S., et al.
Publicado: (2022) -
RARE-02.RE-IRRADIATION FOR RECURRENT CRANIOPHARYNGIOMA
por: Foran, Sarah, et al.
Publicado: (2020)