Cargando…
Accelerated cardiac T(1) mapping in four heartbeats with inline MyoMapNet: a deep learning-based T(1) estimation approach
PURPOSE: To develop and evaluate MyoMapNet, a rapid myocardial T(1) mapping approach that uses fully connected neural networks (FCNN) to estimate T(1) values from four T(1)-weighted images collected after a single inversion pulse in four heartbeats (Look-Locker, LL4). METHOD: We implemented an FCNN...
Autores principales: | Guo, Rui, El-Rewaidy, Hossam, Assana, Salah, Cai, Xiaoying, Amyar, Amine, Chow, Kelvin, Bi, Xiaoming, Yankama, Tuyen, Cirillo, Julia, Pierce, Patrick, Goddu, Beth, Ngo, Long, Nezafat, Reza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8734349/ https://www.ncbi.nlm.nih.gov/pubmed/34986850 http://dx.doi.org/10.1186/s12968-021-00834-0 |
Ejemplares similares
-
An inline deep learning based free-breathing ECG-free cine for exercise cardiovascular magnetic resonance
por: Morales, Manuel A., et al.
Publicado: (2022) -
Automated analysis of cardiovascular magnetic resonance myocardial native T(1) mapping images using fully convolutional neural networks
por: Fahmy, Ahmed S., et al.
Publicado: (2019) -
Characterization of interstitial diffuse fibrosis patterns using texture analysis of myocardial native T(1) mapping
por: El-Rewaidy, Hossam, et al.
Publicado: (2020) -
Automated inline extracellular volume (ECV) mapping
por: Spottiswoode, Bruce S, et al.
Publicado: (2015) -
Inline quantitative myocardial perfusion flow mapping
por: Xue, Hui, et al.
Publicado: (2016)