Cargando…
Sex-dependent effects of chronic exercise on cognitive flexibility but not hippocampal Bdnf in aging mice
Cognitive impairments associated with advanced age involve alterations in the hippocampus that changes with experience throughout life. The hippocampus is critical for cognitive flexibility involved with extinction and reinstatement of conditioned fear. It is widely accepted that regular exercise ca...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8734434/ https://www.ncbi.nlm.nih.gov/pubmed/35036000 http://dx.doi.org/10.1042/NS20210053 |
_version_ | 1784628019353092096 |
---|---|
author | Short, Annabel K. Bui, Viet Zbukvic, Isabel C. Hannan, Anthony J. Pang, Terence Y. Kim, Jee Hyun |
author_facet | Short, Annabel K. Bui, Viet Zbukvic, Isabel C. Hannan, Anthony J. Pang, Terence Y. Kim, Jee Hyun |
author_sort | Short, Annabel K. |
collection | PubMed |
description | Cognitive impairments associated with advanced age involve alterations in the hippocampus that changes with experience throughout life. The hippocampus is critical for cognitive flexibility involved with extinction and reinstatement of conditioned fear. It is widely accepted that regular exercise can be beneficial for hippocampal function. Therefore, we asked whether chronic voluntary exercise in middle-aged mice can improve extinction and/or reinstatement of conditioned fear compared with standard-housing. Eight-month-old male and female C57Bl/6J mice had access to a running wheel or remained in standard-housing until 11 months of age. Alongside control standard-housed young adult (3-month-old) mice, they received tone–footshock pairings, which were subsequently extinguished with tone-alone presentations the next day. Half of the mice then received a reminder in the form of a single footshock. Male and female 11-month-old mice housed in standard conditions exhibited impaired reinstatement compared with young adult mice. However, for males that had access to a running wheel from 8 months of age, the reminder treatment rescued reinstatement ability. This was not observed in females. Additionally, exercise during middle age in both sexes increased expression of brain-derived neurotrophic factor (Bdnf) mRNA in the hippocampus, specifically exon 4 mRNA. These results show that, at least for males, physical exercise is beneficial for reducing age-related decline in cognitive abilities. Despite not affecting reinstatement, exercise also increased Bdnf gene expression in the female hippocampus, which could potentially benefit other forms of hippocampus-dependent cognition. |
format | Online Article Text |
id | pubmed-8734434 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Portland Press Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-87344342022-01-14 Sex-dependent effects of chronic exercise on cognitive flexibility but not hippocampal Bdnf in aging mice Short, Annabel K. Bui, Viet Zbukvic, Isabel C. Hannan, Anthony J. Pang, Terence Y. Kim, Jee Hyun Neuronal Signal Aging Cognitive impairments associated with advanced age involve alterations in the hippocampus that changes with experience throughout life. The hippocampus is critical for cognitive flexibility involved with extinction and reinstatement of conditioned fear. It is widely accepted that regular exercise can be beneficial for hippocampal function. Therefore, we asked whether chronic voluntary exercise in middle-aged mice can improve extinction and/or reinstatement of conditioned fear compared with standard-housing. Eight-month-old male and female C57Bl/6J mice had access to a running wheel or remained in standard-housing until 11 months of age. Alongside control standard-housed young adult (3-month-old) mice, they received tone–footshock pairings, which were subsequently extinguished with tone-alone presentations the next day. Half of the mice then received a reminder in the form of a single footshock. Male and female 11-month-old mice housed in standard conditions exhibited impaired reinstatement compared with young adult mice. However, for males that had access to a running wheel from 8 months of age, the reminder treatment rescued reinstatement ability. This was not observed in females. Additionally, exercise during middle age in both sexes increased expression of brain-derived neurotrophic factor (Bdnf) mRNA in the hippocampus, specifically exon 4 mRNA. These results show that, at least for males, physical exercise is beneficial for reducing age-related decline in cognitive abilities. Despite not affecting reinstatement, exercise also increased Bdnf gene expression in the female hippocampus, which could potentially benefit other forms of hippocampus-dependent cognition. Portland Press Ltd. 2022-01-05 /pmc/articles/PMC8734434/ /pubmed/35036000 http://dx.doi.org/10.1042/NS20210053 Text en © 2022 The Author(s). https://creativecommons.org/licenses/by/4.0/This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) . Open access for this article was enabled by the participation of University Of Melbourne in an all-inclusive Read & Publish pilot with Portland Press and the Biochemical Society under a transformative agreement with CAUL. |
spellingShingle | Aging Short, Annabel K. Bui, Viet Zbukvic, Isabel C. Hannan, Anthony J. Pang, Terence Y. Kim, Jee Hyun Sex-dependent effects of chronic exercise on cognitive flexibility but not hippocampal Bdnf in aging mice |
title | Sex-dependent effects of chronic exercise on cognitive flexibility but not hippocampal Bdnf in aging mice |
title_full | Sex-dependent effects of chronic exercise on cognitive flexibility but not hippocampal Bdnf in aging mice |
title_fullStr | Sex-dependent effects of chronic exercise on cognitive flexibility but not hippocampal Bdnf in aging mice |
title_full_unstemmed | Sex-dependent effects of chronic exercise on cognitive flexibility but not hippocampal Bdnf in aging mice |
title_short | Sex-dependent effects of chronic exercise on cognitive flexibility but not hippocampal Bdnf in aging mice |
title_sort | sex-dependent effects of chronic exercise on cognitive flexibility but not hippocampal bdnf in aging mice |
topic | Aging |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8734434/ https://www.ncbi.nlm.nih.gov/pubmed/35036000 http://dx.doi.org/10.1042/NS20210053 |
work_keys_str_mv | AT shortannabelk sexdependenteffectsofchronicexerciseoncognitiveflexibilitybutnothippocampalbdnfinagingmice AT buiviet sexdependenteffectsofchronicexerciseoncognitiveflexibilitybutnothippocampalbdnfinagingmice AT zbukvicisabelc sexdependenteffectsofchronicexerciseoncognitiveflexibilitybutnothippocampalbdnfinagingmice AT hannananthonyj sexdependenteffectsofchronicexerciseoncognitiveflexibilitybutnothippocampalbdnfinagingmice AT pangterencey sexdependenteffectsofchronicexerciseoncognitiveflexibilitybutnothippocampalbdnfinagingmice AT kimjeehyun sexdependenteffectsofchronicexerciseoncognitiveflexibilitybutnothippocampalbdnfinagingmice |