Cargando…

Sex-dependent effects of chronic exercise on cognitive flexibility but not hippocampal Bdnf in aging mice

Cognitive impairments associated with advanced age involve alterations in the hippocampus that changes with experience throughout life. The hippocampus is critical for cognitive flexibility involved with extinction and reinstatement of conditioned fear. It is widely accepted that regular exercise ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Short, Annabel K., Bui, Viet, Zbukvic, Isabel C., Hannan, Anthony J., Pang, Terence Y., Kim, Jee Hyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8734434/
https://www.ncbi.nlm.nih.gov/pubmed/35036000
http://dx.doi.org/10.1042/NS20210053
_version_ 1784628019353092096
author Short, Annabel K.
Bui, Viet
Zbukvic, Isabel C.
Hannan, Anthony J.
Pang, Terence Y.
Kim, Jee Hyun
author_facet Short, Annabel K.
Bui, Viet
Zbukvic, Isabel C.
Hannan, Anthony J.
Pang, Terence Y.
Kim, Jee Hyun
author_sort Short, Annabel K.
collection PubMed
description Cognitive impairments associated with advanced age involve alterations in the hippocampus that changes with experience throughout life. The hippocampus is critical for cognitive flexibility involved with extinction and reinstatement of conditioned fear. It is widely accepted that regular exercise can be beneficial for hippocampal function. Therefore, we asked whether chronic voluntary exercise in middle-aged mice can improve extinction and/or reinstatement of conditioned fear compared with standard-housing. Eight-month-old male and female C57Bl/6J mice had access to a running wheel or remained in standard-housing until 11 months of age. Alongside control standard-housed young adult (3-month-old) mice, they received tone–footshock pairings, which were subsequently extinguished with tone-alone presentations the next day. Half of the mice then received a reminder in the form of a single footshock. Male and female 11-month-old mice housed in standard conditions exhibited impaired reinstatement compared with young adult mice. However, for males that had access to a running wheel from 8 months of age, the reminder treatment rescued reinstatement ability. This was not observed in females. Additionally, exercise during middle age in both sexes increased expression of brain-derived neurotrophic factor (Bdnf) mRNA in the hippocampus, specifically exon 4 mRNA. These results show that, at least for males, physical exercise is beneficial for reducing age-related decline in cognitive abilities. Despite not affecting reinstatement, exercise also increased Bdnf gene expression in the female hippocampus, which could potentially benefit other forms of hippocampus-dependent cognition.
format Online
Article
Text
id pubmed-8734434
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Portland Press Ltd.
record_format MEDLINE/PubMed
spelling pubmed-87344342022-01-14 Sex-dependent effects of chronic exercise on cognitive flexibility but not hippocampal Bdnf in aging mice Short, Annabel K. Bui, Viet Zbukvic, Isabel C. Hannan, Anthony J. Pang, Terence Y. Kim, Jee Hyun Neuronal Signal Aging Cognitive impairments associated with advanced age involve alterations in the hippocampus that changes with experience throughout life. The hippocampus is critical for cognitive flexibility involved with extinction and reinstatement of conditioned fear. It is widely accepted that regular exercise can be beneficial for hippocampal function. Therefore, we asked whether chronic voluntary exercise in middle-aged mice can improve extinction and/or reinstatement of conditioned fear compared with standard-housing. Eight-month-old male and female C57Bl/6J mice had access to a running wheel or remained in standard-housing until 11 months of age. Alongside control standard-housed young adult (3-month-old) mice, they received tone–footshock pairings, which were subsequently extinguished with tone-alone presentations the next day. Half of the mice then received a reminder in the form of a single footshock. Male and female 11-month-old mice housed in standard conditions exhibited impaired reinstatement compared with young adult mice. However, for males that had access to a running wheel from 8 months of age, the reminder treatment rescued reinstatement ability. This was not observed in females. Additionally, exercise during middle age in both sexes increased expression of brain-derived neurotrophic factor (Bdnf) mRNA in the hippocampus, specifically exon 4 mRNA. These results show that, at least for males, physical exercise is beneficial for reducing age-related decline in cognitive abilities. Despite not affecting reinstatement, exercise also increased Bdnf gene expression in the female hippocampus, which could potentially benefit other forms of hippocampus-dependent cognition. Portland Press Ltd. 2022-01-05 /pmc/articles/PMC8734434/ /pubmed/35036000 http://dx.doi.org/10.1042/NS20210053 Text en © 2022 The Author(s). https://creativecommons.org/licenses/by/4.0/This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) . Open access for this article was enabled by the participation of University Of Melbourne in an all-inclusive Read & Publish pilot with Portland Press and the Biochemical Society under a transformative agreement with CAUL.
spellingShingle Aging
Short, Annabel K.
Bui, Viet
Zbukvic, Isabel C.
Hannan, Anthony J.
Pang, Terence Y.
Kim, Jee Hyun
Sex-dependent effects of chronic exercise on cognitive flexibility but not hippocampal Bdnf in aging mice
title Sex-dependent effects of chronic exercise on cognitive flexibility but not hippocampal Bdnf in aging mice
title_full Sex-dependent effects of chronic exercise on cognitive flexibility but not hippocampal Bdnf in aging mice
title_fullStr Sex-dependent effects of chronic exercise on cognitive flexibility but not hippocampal Bdnf in aging mice
title_full_unstemmed Sex-dependent effects of chronic exercise on cognitive flexibility but not hippocampal Bdnf in aging mice
title_short Sex-dependent effects of chronic exercise on cognitive flexibility but not hippocampal Bdnf in aging mice
title_sort sex-dependent effects of chronic exercise on cognitive flexibility but not hippocampal bdnf in aging mice
topic Aging
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8734434/
https://www.ncbi.nlm.nih.gov/pubmed/35036000
http://dx.doi.org/10.1042/NS20210053
work_keys_str_mv AT shortannabelk sexdependenteffectsofchronicexerciseoncognitiveflexibilitybutnothippocampalbdnfinagingmice
AT buiviet sexdependenteffectsofchronicexerciseoncognitiveflexibilitybutnothippocampalbdnfinagingmice
AT zbukvicisabelc sexdependenteffectsofchronicexerciseoncognitiveflexibilitybutnothippocampalbdnfinagingmice
AT hannananthonyj sexdependenteffectsofchronicexerciseoncognitiveflexibilitybutnothippocampalbdnfinagingmice
AT pangterencey sexdependenteffectsofchronicexerciseoncognitiveflexibilitybutnothippocampalbdnfinagingmice
AT kimjeehyun sexdependenteffectsofchronicexerciseoncognitiveflexibilitybutnothippocampalbdnfinagingmice