Cargando…
Comparative genomics of the black rot pathogen Xanthomonas campestris pv. campestris and non-pathogenic co-inhabitant Xanthomonas melonis from Trinidad reveal unique pathogenicity determinants and secretion system profiles
Black-rot disease caused by the phytopathogen Xanthomonas campestris pv. campestris (Xcc) continues to have considerable impacts on the productivity of cruciferous crops in Trinidad and Tobago and the wider Caribbean region. While the widespread occurrence of resistance of Xcc against bactericidal a...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8734464/ https://www.ncbi.nlm.nih.gov/pubmed/35036136 http://dx.doi.org/10.7717/peerj.12632 |
_version_ | 1784628024211144704 |
---|---|
author | Ramnarine, Stephen D. B. Jr. Jayaraman, Jayaraj Ramsubhag, Adesh |
author_facet | Ramnarine, Stephen D. B. Jr. Jayaraman, Jayaraj Ramsubhag, Adesh |
author_sort | Ramnarine, Stephen D. B. Jr. |
collection | PubMed |
description | Black-rot disease caused by the phytopathogen Xanthomonas campestris pv. campestris (Xcc) continues to have considerable impacts on the productivity of cruciferous crops in Trinidad and Tobago and the wider Caribbean region. While the widespread occurrence of resistance of Xcc against bactericidal agrochemicals can contribute to the high disease burdens, the role of virulence and pathogenicity features of local strains on disease prevalence and severity has not been investigated yet. In the present study, a comparative genomic analysis was performed on 6 pathogenic Xcc and 4 co-isolated non-pathogenic Xanthomonas melonis (Xmel) strains from diseased crucifer plants grown in fields with heavy chemical use in Trinidad. Native isolates were grouped into two known and four newly assigned ribosomal sequence types (rST). Mobile genetic elements were identified which belonged to the IS3, IS5 family, Tn3 transposon, resolvases, and tra T4SS gene clusters. Additionally, exogenous plasmid derived sequences with origins from other bacterial species were characterised. Although several instances of genomic rearrangements were observed, native Xcc and Xmel isolates shared a significant level of structural homology with reference genomes, Xcc ATCC 33913 and Xmel CFBP4644, respectively. Complete T1SS hlyDB, T2SS, T4SS vir and T5SS xadA, yapH and estA gene clusters were identified in both species. Only Xmel strains contained a complete T6SS but no T3SS. Both species contained a complex repertoire of extracellular cell wall degrading enzymes. Native Xcc strains contained 37 T3SS and effector genes but a variable and unique profile of 8 avr, 4 xop and 1 hpa genes. Interestingly, Xmel strains contained several T3SS effectors with low similarity to references including avrXccA1 (~89%), hrpG (~73%), hrpX (~90%) and xopAZ (~87%). Furthermore, only Xmel genomes contained a CRISPR-Cas I-F array, but no lipopolysaccharide wxc gene cluster. Xmel strains were confirmed to be non-pathogenic by pathogenicity assays. The results of this study will be useful to guide future research into virulence mechanisms, agrochemical resistance, pathogenomics and the potential role of the co-isolated non-pathogenic Xanthomonas strains on Xcc infections. |
format | Online Article Text |
id | pubmed-8734464 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-87344642022-01-14 Comparative genomics of the black rot pathogen Xanthomonas campestris pv. campestris and non-pathogenic co-inhabitant Xanthomonas melonis from Trinidad reveal unique pathogenicity determinants and secretion system profiles Ramnarine, Stephen D. B. Jr. Jayaraman, Jayaraj Ramsubhag, Adesh PeerJ Agricultural Science Black-rot disease caused by the phytopathogen Xanthomonas campestris pv. campestris (Xcc) continues to have considerable impacts on the productivity of cruciferous crops in Trinidad and Tobago and the wider Caribbean region. While the widespread occurrence of resistance of Xcc against bactericidal agrochemicals can contribute to the high disease burdens, the role of virulence and pathogenicity features of local strains on disease prevalence and severity has not been investigated yet. In the present study, a comparative genomic analysis was performed on 6 pathogenic Xcc and 4 co-isolated non-pathogenic Xanthomonas melonis (Xmel) strains from diseased crucifer plants grown in fields with heavy chemical use in Trinidad. Native isolates were grouped into two known and four newly assigned ribosomal sequence types (rST). Mobile genetic elements were identified which belonged to the IS3, IS5 family, Tn3 transposon, resolvases, and tra T4SS gene clusters. Additionally, exogenous plasmid derived sequences with origins from other bacterial species were characterised. Although several instances of genomic rearrangements were observed, native Xcc and Xmel isolates shared a significant level of structural homology with reference genomes, Xcc ATCC 33913 and Xmel CFBP4644, respectively. Complete T1SS hlyDB, T2SS, T4SS vir and T5SS xadA, yapH and estA gene clusters were identified in both species. Only Xmel strains contained a complete T6SS but no T3SS. Both species contained a complex repertoire of extracellular cell wall degrading enzymes. Native Xcc strains contained 37 T3SS and effector genes but a variable and unique profile of 8 avr, 4 xop and 1 hpa genes. Interestingly, Xmel strains contained several T3SS effectors with low similarity to references including avrXccA1 (~89%), hrpG (~73%), hrpX (~90%) and xopAZ (~87%). Furthermore, only Xmel genomes contained a CRISPR-Cas I-F array, but no lipopolysaccharide wxc gene cluster. Xmel strains were confirmed to be non-pathogenic by pathogenicity assays. The results of this study will be useful to guide future research into virulence mechanisms, agrochemical resistance, pathogenomics and the potential role of the co-isolated non-pathogenic Xanthomonas strains on Xcc infections. PeerJ Inc. 2022-01-03 /pmc/articles/PMC8734464/ /pubmed/35036136 http://dx.doi.org/10.7717/peerj.12632 Text en © 2022 Ramnarine et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Agricultural Science Ramnarine, Stephen D. B. Jr. Jayaraman, Jayaraj Ramsubhag, Adesh Comparative genomics of the black rot pathogen Xanthomonas campestris pv. campestris and non-pathogenic co-inhabitant Xanthomonas melonis from Trinidad reveal unique pathogenicity determinants and secretion system profiles |
title | Comparative genomics of the black rot pathogen Xanthomonas campestris pv. campestris and non-pathogenic co-inhabitant Xanthomonas melonis from Trinidad reveal unique pathogenicity determinants and secretion system profiles |
title_full | Comparative genomics of the black rot pathogen Xanthomonas campestris pv. campestris and non-pathogenic co-inhabitant Xanthomonas melonis from Trinidad reveal unique pathogenicity determinants and secretion system profiles |
title_fullStr | Comparative genomics of the black rot pathogen Xanthomonas campestris pv. campestris and non-pathogenic co-inhabitant Xanthomonas melonis from Trinidad reveal unique pathogenicity determinants and secretion system profiles |
title_full_unstemmed | Comparative genomics of the black rot pathogen Xanthomonas campestris pv. campestris and non-pathogenic co-inhabitant Xanthomonas melonis from Trinidad reveal unique pathogenicity determinants and secretion system profiles |
title_short | Comparative genomics of the black rot pathogen Xanthomonas campestris pv. campestris and non-pathogenic co-inhabitant Xanthomonas melonis from Trinidad reveal unique pathogenicity determinants and secretion system profiles |
title_sort | comparative genomics of the black rot pathogen xanthomonas campestris pv. campestris and non-pathogenic co-inhabitant xanthomonas melonis from trinidad reveal unique pathogenicity determinants and secretion system profiles |
topic | Agricultural Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8734464/ https://www.ncbi.nlm.nih.gov/pubmed/35036136 http://dx.doi.org/10.7717/peerj.12632 |
work_keys_str_mv | AT ramnarinestephendbjr comparativegenomicsoftheblackrotpathogenxanthomonascampestrispvcampestrisandnonpathogeniccoinhabitantxanthomonasmelonisfromtrinidadrevealuniquepathogenicitydeterminantsandsecretionsystemprofiles AT jayaramanjayaraj comparativegenomicsoftheblackrotpathogenxanthomonascampestrispvcampestrisandnonpathogeniccoinhabitantxanthomonasmelonisfromtrinidadrevealuniquepathogenicitydeterminantsandsecretionsystemprofiles AT ramsubhagadesh comparativegenomicsoftheblackrotpathogenxanthomonascampestrispvcampestrisandnonpathogeniccoinhabitantxanthomonasmelonisfromtrinidadrevealuniquepathogenicitydeterminantsandsecretionsystemprofiles |