Cargando…
cuSCNN: A Secure and Batch-Processing Framework for Privacy-Preserving Convolutional Neural Network Prediction on GPU
The emerging topic of privacy-preserving deep learning as a service has attracted increasing attention in recent years, which focuses on building an efficient and practical neural network prediction framework to secure client and model-holder data privately on the cloud. In such a task, the time cos...
Autores principales: | Bai, Yanan, Liu, Quanliang, Wu, Wenyuan, Feng, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8734535/ https://www.ncbi.nlm.nih.gov/pubmed/35002664 http://dx.doi.org/10.3389/fncom.2021.799977 |
Ejemplares similares
-
A Secure Mutual Batch Authentication Scheme for Patient Data Privacy Preserving in WBAN
por: Konan, Martin, et al.
Publicado: (2019) -
Chaotic-map based authenticated security framework with privacy preservation for remote point-of-care
por: Deebak, B. D., et al.
Publicado: (2020) -
On privacy-preserving protocols for smart metering systems: security and privacy in smart grids
por: Borges de Oliveira, Fábio
Publicado: (2017) -
DNA Methylation Patterns Correlate with the Expression of SCNN1A, SCNN1B, and SCNN1G (Epithelial Sodium Channel, ENaC) Genes
por: Pierandrei, Silvia, et al.
Publicado: (2021) -
CADEN: cellular automata and DNA based secure framework for privacy preserving in IoT based healthcare
por: Hurrah, Nasir N., et al.
Publicado: (2022)