Cargando…
Long noncoding RNA KIF9-AS1 promotes cell apoptosis by targeting the microRNA-148a-3p/suppressor of cytokine signaling axis in inflammatory bowel disease
OBJECTIVE: Inflammatory bowel disease (IBD) is a chronic intestinal disease. This study was attempted to investigate the effects of long noncoding RNA KIF9-AS1 (KIF9-AS1) on the development of IBD and its underlying mechanism of action. METHODS: Quantitative real time PCR (qRT-PCR) was implemented t...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams And Wilkins
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8734634/ https://www.ncbi.nlm.nih.gov/pubmed/34750325 http://dx.doi.org/10.1097/MEG.0000000000002309 |
_version_ | 1784628053995945984 |
---|---|
author | Yao, Jun Gao, Ruoyu Luo, Minghan Li, Defeng Guo, Liliangzi Yu, Zichao Xiong, Feng Wei, Cheng Wu, Benhua Xu, Zhenglei Zhang, Dingguo Wang, Jianyao Wang, Lisheng |
author_facet | Yao, Jun Gao, Ruoyu Luo, Minghan Li, Defeng Guo, Liliangzi Yu, Zichao Xiong, Feng Wei, Cheng Wu, Benhua Xu, Zhenglei Zhang, Dingguo Wang, Jianyao Wang, Lisheng |
author_sort | Yao, Jun |
collection | PubMed |
description | OBJECTIVE: Inflammatory bowel disease (IBD) is a chronic intestinal disease. This study was attempted to investigate the effects of long noncoding RNA KIF9-AS1 (KIF9-AS1) on the development of IBD and its underlying mechanism of action. METHODS: Quantitative real time PCR (qRT-PCR) was implemented to examine the expression of KIF9-AS1 and microRNA-148a-3p (miR-148a-3p). The IBD mouse model was induced by dextran sulfate sodium (DSS). The body weight, disease activity index (DAI) score, colon length and histological injury were used to evaluate the colon injury. The levels of proinflammatory cytokines were measured by ELISA. In vitro, IBD was simulated by DSS treatment in colonic cells. Then the apoptosis of colonic cells was detected by flow cytometry assay. Furthermore, a dual-luciferase reporter assay was used to demonstrate the interactions among KIF9-AS1, miR-148a-3p and suppressor of cytokine signaling (SOCS3). RESULTS: KIF9-AS1 expression was upregulated in IBD patients, DSS-induced IBD mice and DSS-induced colonic cells, whereas miR-148a-3p expression was downregulated. KIF9-AS1 silencing attenuated the apoptosis of DSS-induced colonic cells in vitro and alleviated colon injury and inflammation in DSS-induced IBD mice in vivo. Additionally, the mechanical experiment confirmed that KIF9-AS1 and SOCS3 were both targeted by miR-148a-3p with the complementary binding sites at 3′UTR. Moreover, miR-148a-3p inhibition or SOCS3 overexpression reversed the suppressive effect of KIF9-AS1 silencing on the apoptosis of DSS-induced colonic cells. CONCLUSION: KIF9-AS1 silencing hampered the colon injury and inflammation in DSS-induced IBD mice in vivo, and restrained the apoptosis of DSS-induced colonic cells by regulating the miR-148a-3p/SOCS3 axis in vitro, providing a new therapeutic target for IBD. |
format | Online Article Text |
id | pubmed-8734634 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Lippincott Williams And Wilkins |
record_format | MEDLINE/PubMed |
spelling | pubmed-87346342022-01-07 Long noncoding RNA KIF9-AS1 promotes cell apoptosis by targeting the microRNA-148a-3p/suppressor of cytokine signaling axis in inflammatory bowel disease Yao, Jun Gao, Ruoyu Luo, Minghan Li, Defeng Guo, Liliangzi Yu, Zichao Xiong, Feng Wei, Cheng Wu, Benhua Xu, Zhenglei Zhang, Dingguo Wang, Jianyao Wang, Lisheng Eur J Gastroenterol Hepatol Original Study OBJECTIVE: Inflammatory bowel disease (IBD) is a chronic intestinal disease. This study was attempted to investigate the effects of long noncoding RNA KIF9-AS1 (KIF9-AS1) on the development of IBD and its underlying mechanism of action. METHODS: Quantitative real time PCR (qRT-PCR) was implemented to examine the expression of KIF9-AS1 and microRNA-148a-3p (miR-148a-3p). The IBD mouse model was induced by dextran sulfate sodium (DSS). The body weight, disease activity index (DAI) score, colon length and histological injury were used to evaluate the colon injury. The levels of proinflammatory cytokines were measured by ELISA. In vitro, IBD was simulated by DSS treatment in colonic cells. Then the apoptosis of colonic cells was detected by flow cytometry assay. Furthermore, a dual-luciferase reporter assay was used to demonstrate the interactions among KIF9-AS1, miR-148a-3p and suppressor of cytokine signaling (SOCS3). RESULTS: KIF9-AS1 expression was upregulated in IBD patients, DSS-induced IBD mice and DSS-induced colonic cells, whereas miR-148a-3p expression was downregulated. KIF9-AS1 silencing attenuated the apoptosis of DSS-induced colonic cells in vitro and alleviated colon injury and inflammation in DSS-induced IBD mice in vivo. Additionally, the mechanical experiment confirmed that KIF9-AS1 and SOCS3 were both targeted by miR-148a-3p with the complementary binding sites at 3′UTR. Moreover, miR-148a-3p inhibition or SOCS3 overexpression reversed the suppressive effect of KIF9-AS1 silencing on the apoptosis of DSS-induced colonic cells. CONCLUSION: KIF9-AS1 silencing hampered the colon injury and inflammation in DSS-induced IBD mice in vivo, and restrained the apoptosis of DSS-induced colonic cells by regulating the miR-148a-3p/SOCS3 axis in vitro, providing a new therapeutic target for IBD. Lippincott Williams And Wilkins 2021-11-08 2021-12 /pmc/articles/PMC8734634/ /pubmed/34750325 http://dx.doi.org/10.1097/MEG.0000000000002309 Text en Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) , where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. |
spellingShingle | Original Study Yao, Jun Gao, Ruoyu Luo, Minghan Li, Defeng Guo, Liliangzi Yu, Zichao Xiong, Feng Wei, Cheng Wu, Benhua Xu, Zhenglei Zhang, Dingguo Wang, Jianyao Wang, Lisheng Long noncoding RNA KIF9-AS1 promotes cell apoptosis by targeting the microRNA-148a-3p/suppressor of cytokine signaling axis in inflammatory bowel disease |
title | Long noncoding RNA KIF9-AS1 promotes cell apoptosis by targeting the microRNA-148a-3p/suppressor of cytokine signaling axis in inflammatory bowel disease |
title_full | Long noncoding RNA KIF9-AS1 promotes cell apoptosis by targeting the microRNA-148a-3p/suppressor of cytokine signaling axis in inflammatory bowel disease |
title_fullStr | Long noncoding RNA KIF9-AS1 promotes cell apoptosis by targeting the microRNA-148a-3p/suppressor of cytokine signaling axis in inflammatory bowel disease |
title_full_unstemmed | Long noncoding RNA KIF9-AS1 promotes cell apoptosis by targeting the microRNA-148a-3p/suppressor of cytokine signaling axis in inflammatory bowel disease |
title_short | Long noncoding RNA KIF9-AS1 promotes cell apoptosis by targeting the microRNA-148a-3p/suppressor of cytokine signaling axis in inflammatory bowel disease |
title_sort | long noncoding rna kif9-as1 promotes cell apoptosis by targeting the microrna-148a-3p/suppressor of cytokine signaling axis in inflammatory bowel disease |
topic | Original Study |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8734634/ https://www.ncbi.nlm.nih.gov/pubmed/34750325 http://dx.doi.org/10.1097/MEG.0000000000002309 |
work_keys_str_mv | AT yaojun longnoncodingrnakif9as1promotescellapoptosisbytargetingthemicrorna148a3psuppressorofcytokinesignalingaxisininflammatoryboweldisease AT gaoruoyu longnoncodingrnakif9as1promotescellapoptosisbytargetingthemicrorna148a3psuppressorofcytokinesignalingaxisininflammatoryboweldisease AT luominghan longnoncodingrnakif9as1promotescellapoptosisbytargetingthemicrorna148a3psuppressorofcytokinesignalingaxisininflammatoryboweldisease AT lidefeng longnoncodingrnakif9as1promotescellapoptosisbytargetingthemicrorna148a3psuppressorofcytokinesignalingaxisininflammatoryboweldisease AT guoliliangzi longnoncodingrnakif9as1promotescellapoptosisbytargetingthemicrorna148a3psuppressorofcytokinesignalingaxisininflammatoryboweldisease AT yuzichao longnoncodingrnakif9as1promotescellapoptosisbytargetingthemicrorna148a3psuppressorofcytokinesignalingaxisininflammatoryboweldisease AT xiongfeng longnoncodingrnakif9as1promotescellapoptosisbytargetingthemicrorna148a3psuppressorofcytokinesignalingaxisininflammatoryboweldisease AT weicheng longnoncodingrnakif9as1promotescellapoptosisbytargetingthemicrorna148a3psuppressorofcytokinesignalingaxisininflammatoryboweldisease AT wubenhua longnoncodingrnakif9as1promotescellapoptosisbytargetingthemicrorna148a3psuppressorofcytokinesignalingaxisininflammatoryboweldisease AT xuzhenglei longnoncodingrnakif9as1promotescellapoptosisbytargetingthemicrorna148a3psuppressorofcytokinesignalingaxisininflammatoryboweldisease AT zhangdingguo longnoncodingrnakif9as1promotescellapoptosisbytargetingthemicrorna148a3psuppressorofcytokinesignalingaxisininflammatoryboweldisease AT wangjianyao longnoncodingrnakif9as1promotescellapoptosisbytargetingthemicrorna148a3psuppressorofcytokinesignalingaxisininflammatoryboweldisease AT wanglisheng longnoncodingrnakif9as1promotescellapoptosisbytargetingthemicrorna148a3psuppressorofcytokinesignalingaxisininflammatoryboweldisease |