Cargando…
A hybrid approach of Weighted Fine-Tuned BERT extraction with deep Siamese Bi – LSTM model for semantic text similarity identification
The conventional semantic text-similarity methods requires high amount of trained labeled data and also human interventions. Generally, it neglects the contextual-information and word-orders information resulted in data sparseness problem and latitudinal-explosion issue. Recently, deep-learning meth...
Autores principales: | Viji, D., Revathy, S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8735740/ https://www.ncbi.nlm.nih.gov/pubmed/35018132 http://dx.doi.org/10.1007/s11042-021-11771-6 |
Ejemplares similares
-
Research on sentiment classification for netizens based on the BERT-BiLSTM-TextCNN model
por: Jiang, Xuchu, et al.
Publicado: (2022) -
Semantic Textual Similarity in Japanese Clinical Domain Texts Using BERT
por: Mutinda, Faith Wavinya, et al.
Publicado: (2021) -
Integrating BERT Embeddings and BiLSTM for Emotion Analysis of Dialogue
por: Gou, Zhinan, et al.
Publicado: (2023) -
A Novel Text Mining Approach for Mental Health Prediction Using Bi-LSTM and BERT Model
por: Zeberga, Kamil, et al.
Publicado: (2022) -
A Fine-Tuned BERT-Based Transfer Learning Approach for Text Classification
por: Qasim, Rukhma, et al.
Publicado: (2022)