Cargando…
Innovations in infectious disease testing: Leveraging COVID-19 pandemic technologies for the future
Innovations in infectious disease testing have improved our abilities to detect and understand the microbial world. The 2019 novel coronavirus infectious disease (COVID-19) pandemic introduced new innovations including non-prescription “over the counter” infectious disease tests, mass spectrometry-b...
Autores principales: | Tran, Nam K., Albahra, Samer, Rashidi, Hooman, May, Larissa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Canadian Society of Clinical Chemists. Published by Elsevier Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8735816/ https://www.ncbi.nlm.nih.gov/pubmed/34998789 http://dx.doi.org/10.1016/j.clinbiochem.2021.12.011 |
Ejemplares similares
-
Comparative performance of two automated machine learning platforms for COVID-19 detection by MALDI-TOF-MS
por: Rashidi, Hooman H., et al.
Publicado: (2022) -
Common statistical concepts in the supervised Machine Learning arena
por: Rashidi, Hooman H., et al.
Publicado: (2023) -
Automated machine learning for endemic active tuberculosis prediction from multiplex serological data
por: Rashidi, Hooman H., et al.
Publicado: (2021) -
Novel application of an automated-machine learning development tool for predicting burn sepsis: proof of concept
por: Tran, Nam K., et al.
Publicado: (2020) -
Prediction of tuberculosis using an automated machine learning platform for models trained on synthetic data
por: Rashidi, Hooman H., et al.
Publicado: (2022)