Cargando…
Gated recurrence enables simple and accurate sequence prediction in stochastic, changing, and structured environments
From decision making to perception to language, predicting what is coming next is crucial. It is also challenging in stochastic, changing, and structured environments; yet the brain makes accurate predictions in many situations. What computational architecture could enable this feat? Bayesian infere...
Autores principales: | Foucault, Cédric, Meyniel, Florent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8735865/ https://www.ncbi.nlm.nih.gov/pubmed/34854377 http://dx.doi.org/10.7554/eLife.71801 |
Ejemplares similares
-
Brain signatures of a multiscale process of sequence learning in humans
por: Maheu, Maxime, et al.
Publicado: (2019) -
Systematic analysis of the contributions of stochastic voltage gated channels to neuronal noise
por: O'Donnell, Cian, et al.
Publicado: (2014) -
Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines
por: Neftci, Emre O., et al.
Publicado: (2016) -
Stochastic variational learning in recurrent spiking networks
por: Jimenez Rezende, Danilo, et al.
Publicado: (2014) -
Prediction of Neural Diameter From Morphology to Enable Accurate Simulation
por: Reed, Jonathan D., et al.
Publicado: (2021)