Cargando…

Mouse‐INtraDuctal (MIND): an in vivo model for studying the underlying mechanisms of DCIS malignancy

Due to widespread adoption of screening mammography, there has been a significant increase in new diagnoses of ductal carcinoma in situ (DCIS). However, DCIS prognosis remains unclear. To address this gap, we developed an in vivo model, Mouse‐INtraDuctal (MIND), in which patient‐derived DCIS epithel...

Descripción completa

Detalles Bibliográficos
Autores principales: Hong, Yan, Limback, Darlene, Elsarraj, Hanan S, Harper, Haleigh, Haines, Haley, Hansford, Hayley, Ricci, Michael, Kaufman, Carolyn, Wedlock, Emily, Xu, Mingchu, Zhang, Jianhua, May, Lisa, Cusick, Therese, Inciardi, Marc, Redick, Mark, Gatewood, Jason, Winblad, Onalisa, Aripoli, Allison, Huppe, Ashley, Balanoff, Christa, Wagner, Jamie L, Amin, Amanda L, Larson, Kelsey E, Ricci, Lawrence, Tawfik, Ossama, Razek, Hana, Meierotto, Ruby O, Madan, Rashna, Godwin, Andrew K, Thompson, Jeffrey, Hilsenbeck, Susan G, Futreal, Andy, Thompson, Alastair, Hwang, E Shelley, Fan, Fang, Behbod, Fariba
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8738143/
https://www.ncbi.nlm.nih.gov/pubmed/34714554
http://dx.doi.org/10.1002/path.5820
_version_ 1784628846616641536
author Hong, Yan
Limback, Darlene
Elsarraj, Hanan S
Harper, Haleigh
Haines, Haley
Hansford, Hayley
Ricci, Michael
Kaufman, Carolyn
Wedlock, Emily
Xu, Mingchu
Zhang, Jianhua
May, Lisa
Cusick, Therese
Inciardi, Marc
Redick, Mark
Gatewood, Jason
Winblad, Onalisa
Aripoli, Allison
Huppe, Ashley
Balanoff, Christa
Wagner, Jamie L
Amin, Amanda L
Larson, Kelsey E
Ricci, Lawrence
Tawfik, Ossama
Razek, Hana
Meierotto, Ruby O
Madan, Rashna
Godwin, Andrew K
Thompson, Jeffrey
Hilsenbeck, Susan G
Futreal, Andy
Thompson, Alastair
Hwang, E Shelley
Fan, Fang
Behbod, Fariba
author_facet Hong, Yan
Limback, Darlene
Elsarraj, Hanan S
Harper, Haleigh
Haines, Haley
Hansford, Hayley
Ricci, Michael
Kaufman, Carolyn
Wedlock, Emily
Xu, Mingchu
Zhang, Jianhua
May, Lisa
Cusick, Therese
Inciardi, Marc
Redick, Mark
Gatewood, Jason
Winblad, Onalisa
Aripoli, Allison
Huppe, Ashley
Balanoff, Christa
Wagner, Jamie L
Amin, Amanda L
Larson, Kelsey E
Ricci, Lawrence
Tawfik, Ossama
Razek, Hana
Meierotto, Ruby O
Madan, Rashna
Godwin, Andrew K
Thompson, Jeffrey
Hilsenbeck, Susan G
Futreal, Andy
Thompson, Alastair
Hwang, E Shelley
Fan, Fang
Behbod, Fariba
author_sort Hong, Yan
collection PubMed
description Due to widespread adoption of screening mammography, there has been a significant increase in new diagnoses of ductal carcinoma in situ (DCIS). However, DCIS prognosis remains unclear. To address this gap, we developed an in vivo model, Mouse‐INtraDuctal (MIND), in which patient‐derived DCIS epithelial cells are injected intraductally and allowed to progress naturally in mice. Similar to human DCIS, the cancer cells formed in situ lesions inside the mouse mammary ducts and mimicked all histologic subtypes including micropapillary, papillary, cribriform, solid, and comedo. Among 37 patient samples injected into 202 xenografts, at median duration of 9 months, 20 samples (54%) injected into 95 xenografts showed in vivo invasive progression, while 17 (46%) samples injected into 107 xenografts remained non‐invasive. Among the 20 samples that showed invasive progression, nine samples injected into 54 xenografts exhibited a mixed pattern in which some xenografts showed invasive progression while others remained non‐invasive. Among the clinically relevant biomarkers, only elevated progesterone receptor expression in patient DCIS and the extent of in vivo growth in xenografts predicted an invasive outcome. The Tempus XT assay was used on 16 patient DCIS formalin‐fixed, paraffin‐embedded sections including eight DCISs that showed invasive progression, five DCISs that remained non‐invasive, and three DCISs that showed a mixed pattern in the xenografts. Analysis of the frequency of cancer‐related pathogenic mutations among the groups showed no significant differences (KW: p > 0.05). There were also no differences in the frequency of high, moderate, or low severity mutations (KW; p > 0.05). These results suggest that genetic changes in the DCIS are not the primary driver for the development of invasive disease. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
format Online
Article
Text
id pubmed-8738143
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley & Sons, Ltd
record_format MEDLINE/PubMed
spelling pubmed-87381432022-10-14 Mouse‐INtraDuctal (MIND): an in vivo model for studying the underlying mechanisms of DCIS malignancy Hong, Yan Limback, Darlene Elsarraj, Hanan S Harper, Haleigh Haines, Haley Hansford, Hayley Ricci, Michael Kaufman, Carolyn Wedlock, Emily Xu, Mingchu Zhang, Jianhua May, Lisa Cusick, Therese Inciardi, Marc Redick, Mark Gatewood, Jason Winblad, Onalisa Aripoli, Allison Huppe, Ashley Balanoff, Christa Wagner, Jamie L Amin, Amanda L Larson, Kelsey E Ricci, Lawrence Tawfik, Ossama Razek, Hana Meierotto, Ruby O Madan, Rashna Godwin, Andrew K Thompson, Jeffrey Hilsenbeck, Susan G Futreal, Andy Thompson, Alastair Hwang, E Shelley Fan, Fang Behbod, Fariba J Pathol Original Papers Due to widespread adoption of screening mammography, there has been a significant increase in new diagnoses of ductal carcinoma in situ (DCIS). However, DCIS prognosis remains unclear. To address this gap, we developed an in vivo model, Mouse‐INtraDuctal (MIND), in which patient‐derived DCIS epithelial cells are injected intraductally and allowed to progress naturally in mice. Similar to human DCIS, the cancer cells formed in situ lesions inside the mouse mammary ducts and mimicked all histologic subtypes including micropapillary, papillary, cribriform, solid, and comedo. Among 37 patient samples injected into 202 xenografts, at median duration of 9 months, 20 samples (54%) injected into 95 xenografts showed in vivo invasive progression, while 17 (46%) samples injected into 107 xenografts remained non‐invasive. Among the 20 samples that showed invasive progression, nine samples injected into 54 xenografts exhibited a mixed pattern in which some xenografts showed invasive progression while others remained non‐invasive. Among the clinically relevant biomarkers, only elevated progesterone receptor expression in patient DCIS and the extent of in vivo growth in xenografts predicted an invasive outcome. The Tempus XT assay was used on 16 patient DCIS formalin‐fixed, paraffin‐embedded sections including eight DCISs that showed invasive progression, five DCISs that remained non‐invasive, and three DCISs that showed a mixed pattern in the xenografts. Analysis of the frequency of cancer‐related pathogenic mutations among the groups showed no significant differences (KW: p > 0.05). There were also no differences in the frequency of high, moderate, or low severity mutations (KW; p > 0.05). These results suggest that genetic changes in the DCIS are not the primary driver for the development of invasive disease. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland. John Wiley & Sons, Ltd 2021-12-13 2022-02 /pmc/articles/PMC8738143/ /pubmed/34714554 http://dx.doi.org/10.1002/path.5820 Text en © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Papers
Hong, Yan
Limback, Darlene
Elsarraj, Hanan S
Harper, Haleigh
Haines, Haley
Hansford, Hayley
Ricci, Michael
Kaufman, Carolyn
Wedlock, Emily
Xu, Mingchu
Zhang, Jianhua
May, Lisa
Cusick, Therese
Inciardi, Marc
Redick, Mark
Gatewood, Jason
Winblad, Onalisa
Aripoli, Allison
Huppe, Ashley
Balanoff, Christa
Wagner, Jamie L
Amin, Amanda L
Larson, Kelsey E
Ricci, Lawrence
Tawfik, Ossama
Razek, Hana
Meierotto, Ruby O
Madan, Rashna
Godwin, Andrew K
Thompson, Jeffrey
Hilsenbeck, Susan G
Futreal, Andy
Thompson, Alastair
Hwang, E Shelley
Fan, Fang
Behbod, Fariba
Mouse‐INtraDuctal (MIND): an in vivo model for studying the underlying mechanisms of DCIS malignancy
title Mouse‐INtraDuctal (MIND): an in vivo model for studying the underlying mechanisms of DCIS malignancy
title_full Mouse‐INtraDuctal (MIND): an in vivo model for studying the underlying mechanisms of DCIS malignancy
title_fullStr Mouse‐INtraDuctal (MIND): an in vivo model for studying the underlying mechanisms of DCIS malignancy
title_full_unstemmed Mouse‐INtraDuctal (MIND): an in vivo model for studying the underlying mechanisms of DCIS malignancy
title_short Mouse‐INtraDuctal (MIND): an in vivo model for studying the underlying mechanisms of DCIS malignancy
title_sort mouse‐intraductal (mind): an in vivo model for studying the underlying mechanisms of dcis malignancy
topic Original Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8738143/
https://www.ncbi.nlm.nih.gov/pubmed/34714554
http://dx.doi.org/10.1002/path.5820
work_keys_str_mv AT hongyan mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT limbackdarlene mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT elsarrajhanans mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT harperhaleigh mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT haineshaley mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT hansfordhayley mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT riccimichael mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT kaufmancarolyn mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT wedlockemily mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT xumingchu mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT zhangjianhua mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT maylisa mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT cusicktherese mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT inciardimarc mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT redickmark mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT gatewoodjason mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT winbladonalisa mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT aripoliallison mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT huppeashley mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT balanoffchrista mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT wagnerjamiel mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT aminamandal mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT larsonkelseye mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT riccilawrence mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT tawfikossama mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT razekhana mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT meierottorubyo mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT madanrashna mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT godwinandrewk mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT thompsonjeffrey mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT hilsenbecksusang mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT futrealandy mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT thompsonalastair mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT hwangeshelley mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT fanfang mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT behbodfariba mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy
AT mouseintraductalmindaninvivomodelforstudyingtheunderlyingmechanismsofdcismalignancy