Cargando…
Targeting UDP-Glycosyltransferase, Glucosamine-6-Phosphate Synthase and Chitin Synthase by Using Bioactive 1,8 Cineole for “Aspergillosis” Fungal Disease Mutilating COVID-19 Patients: Insights from Molecular Docking, Pharmacokinetics and In-vitro Studies
SARS-CoV-2 (COVID-19)-associated co-infections like “Aspergillosis”, has recently baffled the world. Due to its key role in cell wall synthesis, in the present study UDP-glycosyltransferase, glucosamine-6-phosphate synthase and chitin synthase have been chosen as appropriate targets for molecular do...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8739004/ http://dx.doi.org/10.1007/s42250-021-00302-3 |
_version_ | 1784629024265338880 |
---|---|
author | Sharma, Arun Dev Kaur, Inderjeet |
author_facet | Sharma, Arun Dev Kaur, Inderjeet |
author_sort | Sharma, Arun Dev |
collection | PubMed |
description | SARS-CoV-2 (COVID-19)-associated co-infections like “Aspergillosis”, has recently baffled the world. Due to its key role in cell wall synthesis, in the present study UDP-glycosyltransferase, glucosamine-6-phosphate synthase and chitin synthase have been chosen as appropriate targets for molecular docking. The objective of the present study was molecular docking of eucalyptus essential oil component 1,8 cineole against cell wall enzymes followed by in vitro validation. For molecular docking, patch-dock web based online tool was used. Ligand–Protein 2D and 3D Interactions were also studied. Drug likeliness, toxicity profile and cancer cell line toxicity were also studied. Molecular docking results indicated that 1,8 cineole form hydrogen bonding and hydrophobic interactions with UDP-glycosyltransferase, glucosamine-6-phosphate synthase and chitin synthase enzymes. 1,8 cineole also depicted drug likeliness by showing compliance with the LIPINSKY rule, sufficient level of bioactivity and cancer cell line toxicity thus signifying its role as a potent anti-fungal drug. |
format | Online Article Text |
id | pubmed-8739004 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-87390042022-01-07 Targeting UDP-Glycosyltransferase, Glucosamine-6-Phosphate Synthase and Chitin Synthase by Using Bioactive 1,8 Cineole for “Aspergillosis” Fungal Disease Mutilating COVID-19 Patients: Insights from Molecular Docking, Pharmacokinetics and In-vitro Studies Sharma, Arun Dev Kaur, Inderjeet Chemistry Africa Original Article SARS-CoV-2 (COVID-19)-associated co-infections like “Aspergillosis”, has recently baffled the world. Due to its key role in cell wall synthesis, in the present study UDP-glycosyltransferase, glucosamine-6-phosphate synthase and chitin synthase have been chosen as appropriate targets for molecular docking. The objective of the present study was molecular docking of eucalyptus essential oil component 1,8 cineole against cell wall enzymes followed by in vitro validation. For molecular docking, patch-dock web based online tool was used. Ligand–Protein 2D and 3D Interactions were also studied. Drug likeliness, toxicity profile and cancer cell line toxicity were also studied. Molecular docking results indicated that 1,8 cineole form hydrogen bonding and hydrophobic interactions with UDP-glycosyltransferase, glucosamine-6-phosphate synthase and chitin synthase enzymes. 1,8 cineole also depicted drug likeliness by showing compliance with the LIPINSKY rule, sufficient level of bioactivity and cancer cell line toxicity thus signifying its role as a potent anti-fungal drug. Springer International Publishing 2022-01-07 2022 /pmc/articles/PMC8739004/ http://dx.doi.org/10.1007/s42250-021-00302-3 Text en © The Tunisian Chemical Society and Springer Nature Switzerland AG 2021 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Original Article Sharma, Arun Dev Kaur, Inderjeet Targeting UDP-Glycosyltransferase, Glucosamine-6-Phosphate Synthase and Chitin Synthase by Using Bioactive 1,8 Cineole for “Aspergillosis” Fungal Disease Mutilating COVID-19 Patients: Insights from Molecular Docking, Pharmacokinetics and In-vitro Studies |
title | Targeting UDP-Glycosyltransferase, Glucosamine-6-Phosphate Synthase and Chitin Synthase by Using Bioactive 1,8 Cineole for “Aspergillosis” Fungal Disease Mutilating COVID-19 Patients: Insights from Molecular Docking, Pharmacokinetics and In-vitro Studies |
title_full | Targeting UDP-Glycosyltransferase, Glucosamine-6-Phosphate Synthase and Chitin Synthase by Using Bioactive 1,8 Cineole for “Aspergillosis” Fungal Disease Mutilating COVID-19 Patients: Insights from Molecular Docking, Pharmacokinetics and In-vitro Studies |
title_fullStr | Targeting UDP-Glycosyltransferase, Glucosamine-6-Phosphate Synthase and Chitin Synthase by Using Bioactive 1,8 Cineole for “Aspergillosis” Fungal Disease Mutilating COVID-19 Patients: Insights from Molecular Docking, Pharmacokinetics and In-vitro Studies |
title_full_unstemmed | Targeting UDP-Glycosyltransferase, Glucosamine-6-Phosphate Synthase and Chitin Synthase by Using Bioactive 1,8 Cineole for “Aspergillosis” Fungal Disease Mutilating COVID-19 Patients: Insights from Molecular Docking, Pharmacokinetics and In-vitro Studies |
title_short | Targeting UDP-Glycosyltransferase, Glucosamine-6-Phosphate Synthase and Chitin Synthase by Using Bioactive 1,8 Cineole for “Aspergillosis” Fungal Disease Mutilating COVID-19 Patients: Insights from Molecular Docking, Pharmacokinetics and In-vitro Studies |
title_sort | targeting udp-glycosyltransferase, glucosamine-6-phosphate synthase and chitin synthase by using bioactive 1,8 cineole for “aspergillosis” fungal disease mutilating covid-19 patients: insights from molecular docking, pharmacokinetics and in-vitro studies |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8739004/ http://dx.doi.org/10.1007/s42250-021-00302-3 |
work_keys_str_mv | AT sharmaarundev targetingudpglycosyltransferaseglucosamine6phosphatesynthaseandchitinsynthasebyusingbioactive18cineoleforaspergillosisfungaldiseasemutilatingcovid19patientsinsightsfrommoleculardockingpharmacokineticsandinvitrostudies AT kaurinderjeet targetingudpglycosyltransferaseglucosamine6phosphatesynthaseandchitinsynthasebyusingbioactive18cineoleforaspergillosisfungaldiseasemutilatingcovid19patientsinsightsfrommoleculardockingpharmacokineticsandinvitrostudies |