Cargando…
Predicting SARS-CoV-2 infection duration at hospital admission:a deep learning solution
COVID-19 cases are increasing around the globe with almost 5 million of deaths. We propose here a deep learning model capable of predicting the duration of the infection by means of information available at hospital admission. A total of 222 patients were enrolled in our observational study. Anagrap...
Autores principales: | Liuzzi, Piergiuseppe, Campagnini, Silvia, Fanciullacci, Chiara, Arienti, Chiara, Patrini, Michele, Carrozza, Maria Chiara, Mannini, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8739354/ https://www.ncbi.nlm.nih.gov/pubmed/34993693 http://dx.doi.org/10.1007/s11517-021-02479-8 |
Ejemplares similares
-
Machine learning methods for functional recovery prediction and prognosis in post-stroke rehabilitation: a systematic review
por: Campagnini, Silvia, et al.
Publicado: (2022) -
The methodology of a “living” COVID-19 registry development in a clinical context
por: Arienti, Chiara, et al.
Publicado: (2022) -
Mortality and characteristics of older people dying with COVID-19 in Lombardy nursing homes, Italy: An observational cohort study
por: Arienti, Chiara, et al.
Publicado: (2021) -
Effects of control strategies on gait in robot-assisted post-stroke lower limb rehabilitation: a systematic review
por: Campagnini, Silvia, et al.
Publicado: (2022) -
Cross-validation of predictive models for functional recovery after post-stroke rehabilitation
por: Campagnini, Silvia, et al.
Publicado: (2022)