Cargando…

Integrated Pharmacogenetics Analysis of the Three Fangjis Decoctions for Treating Arrhythmias Based on Molecular Network Patterns

Aim: To explore the diverse target distribution and variable mechanisms of different fangjis prescriptions when treating arrhythmias based on the systems pharmacology. Methods: The active ingredients and their corresponding targets were acquired from the three fangjis [Zhigancao Tang (ZT), Guizhigan...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Penglu, Long, Dehuai, Tan, Yupei, Xing, Wenlong, Li, Xiang, Yang, Kuo, Liu, Hongxu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8739471/
https://www.ncbi.nlm.nih.gov/pubmed/35004871
http://dx.doi.org/10.3389/fcvm.2021.726694
_version_ 1784629105965137920
author Wei, Penglu
Long, Dehuai
Tan, Yupei
Xing, Wenlong
Li, Xiang
Yang, Kuo
Liu, Hongxu
author_facet Wei, Penglu
Long, Dehuai
Tan, Yupei
Xing, Wenlong
Li, Xiang
Yang, Kuo
Liu, Hongxu
author_sort Wei, Penglu
collection PubMed
description Aim: To explore the diverse target distribution and variable mechanisms of different fangjis prescriptions when treating arrhythmias based on the systems pharmacology. Methods: The active ingredients and their corresponding targets were acquired from the three fangjis [Zhigancao Tang (ZT), Guizhigancao Longgumuli Tang (GLT), and Huanglian E'jiao Tang (HET)] and the arrhythmia-related genes were identified based on comprehensive database screening. Networks were constructed between the fangjis and arrhythmia and used to define arrhythmia modules. Common and differential gene targets were identified within the arrhythmia network modules and the cover rate (CR) matrix was applied to compare the contributions of the fangjis to the network and modules. Comparative pharmacogenetics analyses were then conducted to define the arrhythmia-related signaling pathways regulated by the fangjis prescriptions. Finally, the divergence and convergence points of the arrhythmia pathways were deciphered based on databases and the published literature. Results: A total of 187, 105, and 68 active ingredients and 1,139, 1,195, and 811 corresponding gene targets of the three fangjis were obtained and 102 arrhythmia-related genes were acquired. An arrhythmia network was constructed and subdivided into 4 modules. For the target distribution analysis, 65.4% of genes were regulated by the three fangjis within the arrhythmia network. ZT and GLT were more similar to each other, mainly regulated by module two, whereas HET was divided among all the modules. From the perspective of signal transduction, calcium-related pathways [calcium, cyclic guanosine 3′,5′-monophosphate (cGMP)-PKG, and cyclic adenosine 3′,5′-monophosphate (cAMP)] and endocrine system-related pathways (oxytocin signaling pathway and renin secretion pathways) were associated with all the three fangjis prescriptions. Nevertheless, heterogeneity existed between the biological processes and pathway distribution among the three prescriptions. GLT and HET were particularly inclined toward the conditions involving abnormal hormone secretion, whereas ZT tended toward renin-angiotensin-aldosterone system (RAAS) disorders. However, calcium signaling-related pathways prominently feature in the pharmacological activities of the decoctions. Experimental validation indicated that ZT, GLT, and HET significantly shortened the duration of ventricular arrhythmia (VA) and downregulated the expression of CALM2 and interleukin-6 (IL-6) messenger RNAs (mRNAs); GLT and HET downregulated the expression of CALM1 and NOS3 mRNAs; HET downregulated the expression of CRP mRNA. Conclusion: Comparing the various distributions of the three fangjis, pathways provide evidence with respect to precise applications toward individualized arrhythmia treatments.
format Online
Article
Text
id pubmed-8739471
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-87394712022-01-08 Integrated Pharmacogenetics Analysis of the Three Fangjis Decoctions for Treating Arrhythmias Based on Molecular Network Patterns Wei, Penglu Long, Dehuai Tan, Yupei Xing, Wenlong Li, Xiang Yang, Kuo Liu, Hongxu Front Cardiovasc Med Cardiovascular Medicine Aim: To explore the diverse target distribution and variable mechanisms of different fangjis prescriptions when treating arrhythmias based on the systems pharmacology. Methods: The active ingredients and their corresponding targets were acquired from the three fangjis [Zhigancao Tang (ZT), Guizhigancao Longgumuli Tang (GLT), and Huanglian E'jiao Tang (HET)] and the arrhythmia-related genes were identified based on comprehensive database screening. Networks were constructed between the fangjis and arrhythmia and used to define arrhythmia modules. Common and differential gene targets were identified within the arrhythmia network modules and the cover rate (CR) matrix was applied to compare the contributions of the fangjis to the network and modules. Comparative pharmacogenetics analyses were then conducted to define the arrhythmia-related signaling pathways regulated by the fangjis prescriptions. Finally, the divergence and convergence points of the arrhythmia pathways were deciphered based on databases and the published literature. Results: A total of 187, 105, and 68 active ingredients and 1,139, 1,195, and 811 corresponding gene targets of the three fangjis were obtained and 102 arrhythmia-related genes were acquired. An arrhythmia network was constructed and subdivided into 4 modules. For the target distribution analysis, 65.4% of genes were regulated by the three fangjis within the arrhythmia network. ZT and GLT were more similar to each other, mainly regulated by module two, whereas HET was divided among all the modules. From the perspective of signal transduction, calcium-related pathways [calcium, cyclic guanosine 3′,5′-monophosphate (cGMP)-PKG, and cyclic adenosine 3′,5′-monophosphate (cAMP)] and endocrine system-related pathways (oxytocin signaling pathway and renin secretion pathways) were associated with all the three fangjis prescriptions. Nevertheless, heterogeneity existed between the biological processes and pathway distribution among the three prescriptions. GLT and HET were particularly inclined toward the conditions involving abnormal hormone secretion, whereas ZT tended toward renin-angiotensin-aldosterone system (RAAS) disorders. However, calcium signaling-related pathways prominently feature in the pharmacological activities of the decoctions. Experimental validation indicated that ZT, GLT, and HET significantly shortened the duration of ventricular arrhythmia (VA) and downregulated the expression of CALM2 and interleukin-6 (IL-6) messenger RNAs (mRNAs); GLT and HET downregulated the expression of CALM1 and NOS3 mRNAs; HET downregulated the expression of CRP mRNA. Conclusion: Comparing the various distributions of the three fangjis, pathways provide evidence with respect to precise applications toward individualized arrhythmia treatments. Frontiers Media S.A. 2021-12-24 /pmc/articles/PMC8739471/ /pubmed/35004871 http://dx.doi.org/10.3389/fcvm.2021.726694 Text en Copyright © 2021 Wei, Long, Tan, Xing, Li, Yang and Liu. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Cardiovascular Medicine
Wei, Penglu
Long, Dehuai
Tan, Yupei
Xing, Wenlong
Li, Xiang
Yang, Kuo
Liu, Hongxu
Integrated Pharmacogenetics Analysis of the Three Fangjis Decoctions for Treating Arrhythmias Based on Molecular Network Patterns
title Integrated Pharmacogenetics Analysis of the Three Fangjis Decoctions for Treating Arrhythmias Based on Molecular Network Patterns
title_full Integrated Pharmacogenetics Analysis of the Three Fangjis Decoctions for Treating Arrhythmias Based on Molecular Network Patterns
title_fullStr Integrated Pharmacogenetics Analysis of the Three Fangjis Decoctions for Treating Arrhythmias Based on Molecular Network Patterns
title_full_unstemmed Integrated Pharmacogenetics Analysis of the Three Fangjis Decoctions for Treating Arrhythmias Based on Molecular Network Patterns
title_short Integrated Pharmacogenetics Analysis of the Three Fangjis Decoctions for Treating Arrhythmias Based on Molecular Network Patterns
title_sort integrated pharmacogenetics analysis of the three fangjis decoctions for treating arrhythmias based on molecular network patterns
topic Cardiovascular Medicine
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8739471/
https://www.ncbi.nlm.nih.gov/pubmed/35004871
http://dx.doi.org/10.3389/fcvm.2021.726694
work_keys_str_mv AT weipenglu integratedpharmacogeneticsanalysisofthethreefangjisdecoctionsfortreatingarrhythmiasbasedonmolecularnetworkpatterns
AT longdehuai integratedpharmacogeneticsanalysisofthethreefangjisdecoctionsfortreatingarrhythmiasbasedonmolecularnetworkpatterns
AT tanyupei integratedpharmacogeneticsanalysisofthethreefangjisdecoctionsfortreatingarrhythmiasbasedonmolecularnetworkpatterns
AT xingwenlong integratedpharmacogeneticsanalysisofthethreefangjisdecoctionsfortreatingarrhythmiasbasedonmolecularnetworkpatterns
AT lixiang integratedpharmacogeneticsanalysisofthethreefangjisdecoctionsfortreatingarrhythmiasbasedonmolecularnetworkpatterns
AT yangkuo integratedpharmacogeneticsanalysisofthethreefangjisdecoctionsfortreatingarrhythmiasbasedonmolecularnetworkpatterns
AT liuhongxu integratedpharmacogeneticsanalysisofthethreefangjisdecoctionsfortreatingarrhythmiasbasedonmolecularnetworkpatterns