Cargando…
Machine Learning Model for Predicting Acute Respiratory Failure in Individuals With Moderate-to-Severe Traumatic Brain Injury
Background: There is a high incidence of acute respiratory failure (ARF) in moderate or severe traumatic brain injury (M-STBI), worsening outcomes. This study aimed to design a predictive model for ARF. Methods: Adult patients with M-STBI [3 ≤ Glasgow Coma Scale (GCS) ≤ 12] with a definite history o...
Autores principales: | Ma, Rui Na, He, Yi Xuan, Bai, Fu Ping, Song, Zhi Peng, Chen, Ming Sheng, Li, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8739486/ https://www.ncbi.nlm.nih.gov/pubmed/35004766 http://dx.doi.org/10.3389/fmed.2021.793230 |
Ejemplares similares
-
Association between Traumatic Subarachnoid Hemorrhage and Acute Respiratory Failure in Moderate-to-Severe Traumatic Brain Injury Patients
por: Li, Min, et al.
Publicado: (2022) -
The impact of admission serum lactate on children with moderate to severe traumatic brain injury
por: Fu, Yue-qiang, et al.
Publicado: (2019) -
Relational Memory at Short and Long Delays in Individuals With Moderate-Severe Traumatic Brain Injury
por: Morrow, Emily L., et al.
Publicado: (2020) -
Severe respiratory failure and traumatic brain injuries: What do we know?
por: Abdussalam, Ahmed L.
Publicado: (2017) -
A Machine Learning Approach for the Prediction of Traumatic Brain Injury Induced Coagulopathy
por: Yang, Fan, et al.
Publicado: (2021)