Cargando…

Discovery of Single Nucleotide Polymorphisms for Resistance to Abnormal Vertical Growth in Macadamia

Abnormal vertical growth (AVG) syndrome is a serious threat to the Australian macadamia industry as it decreases the yield of nuts by as much as 70% per annum. A lack of information on the cause of AVG has hindered the development of an effective disease management strategy. Discovery of genetic mar...

Descripción completa

Detalles Bibliográficos
Autores principales: Zakeel, Mohamed Cassim Mohamed, Alam, Mobashwer, Geering, Andrew D. W., Topp, Bruce, Akinsanmi, Olufemi A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8739493/
https://www.ncbi.nlm.nih.gov/pubmed/35003155
http://dx.doi.org/10.3389/fpls.2021.756815
_version_ 1784629111567679488
author Zakeel, Mohamed Cassim Mohamed
Alam, Mobashwer
Geering, Andrew D. W.
Topp, Bruce
Akinsanmi, Olufemi A.
author_facet Zakeel, Mohamed Cassim Mohamed
Alam, Mobashwer
Geering, Andrew D. W.
Topp, Bruce
Akinsanmi, Olufemi A.
author_sort Zakeel, Mohamed Cassim Mohamed
collection PubMed
description Abnormal vertical growth (AVG) syndrome is a serious threat to the Australian macadamia industry as it decreases the yield of nuts by as much as 70% per annum. A lack of information on the cause of AVG has hindered the development of an effective disease management strategy. Discovery of genetic markers associated with disease resistance can be used as tool for rapid selection of elite cultivars, hence helps in efficient disease management. Differences in field susceptibility of macadamia cultivars provide an opportunity for discovery of genetic markers that are associated with host resistance. REML mixed model analysis was performed to estimate the AVG rating of 51 cultivars from multiple origins using phenotypic data from 359 trees planted in four sites. Most of the Hawaiian cultivars were found as susceptible, while selections from the Australian macadamia industry breeding program were predominantly resistant. All the cultivars were genotyped for 13,221 DArTseq-based single nucleotide polymorphism (SNP) markers. A bulked sample analysis was performed using 20 genotypes each at the extremes of AVG phenotypic ratings. Ten SNP markers were predicted to be associated with AVG resistance and two arbitrarily selected SNP markers were validated using PCR and Sanger sequencing. Our findings suggest that AVG resistance in the commercial cultivars may be derived from the genomic introgression of Macadamia tetraphylla through interspecific hybridization. The results may support marker-assisted selection for macadamia germplasm with AVG resistance.
format Online
Article
Text
id pubmed-8739493
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-87394932022-01-08 Discovery of Single Nucleotide Polymorphisms for Resistance to Abnormal Vertical Growth in Macadamia Zakeel, Mohamed Cassim Mohamed Alam, Mobashwer Geering, Andrew D. W. Topp, Bruce Akinsanmi, Olufemi A. Front Plant Sci Plant Science Abnormal vertical growth (AVG) syndrome is a serious threat to the Australian macadamia industry as it decreases the yield of nuts by as much as 70% per annum. A lack of information on the cause of AVG has hindered the development of an effective disease management strategy. Discovery of genetic markers associated with disease resistance can be used as tool for rapid selection of elite cultivars, hence helps in efficient disease management. Differences in field susceptibility of macadamia cultivars provide an opportunity for discovery of genetic markers that are associated with host resistance. REML mixed model analysis was performed to estimate the AVG rating of 51 cultivars from multiple origins using phenotypic data from 359 trees planted in four sites. Most of the Hawaiian cultivars were found as susceptible, while selections from the Australian macadamia industry breeding program were predominantly resistant. All the cultivars were genotyped for 13,221 DArTseq-based single nucleotide polymorphism (SNP) markers. A bulked sample analysis was performed using 20 genotypes each at the extremes of AVG phenotypic ratings. Ten SNP markers were predicted to be associated with AVG resistance and two arbitrarily selected SNP markers were validated using PCR and Sanger sequencing. Our findings suggest that AVG resistance in the commercial cultivars may be derived from the genomic introgression of Macadamia tetraphylla through interspecific hybridization. The results may support marker-assisted selection for macadamia germplasm with AVG resistance. Frontiers Media S.A. 2021-12-24 /pmc/articles/PMC8739493/ /pubmed/35003155 http://dx.doi.org/10.3389/fpls.2021.756815 Text en Copyright © 2021 Zakeel, Alam, Geering, Topp and Akinsanmi. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Plant Science
Zakeel, Mohamed Cassim Mohamed
Alam, Mobashwer
Geering, Andrew D. W.
Topp, Bruce
Akinsanmi, Olufemi A.
Discovery of Single Nucleotide Polymorphisms for Resistance to Abnormal Vertical Growth in Macadamia
title Discovery of Single Nucleotide Polymorphisms for Resistance to Abnormal Vertical Growth in Macadamia
title_full Discovery of Single Nucleotide Polymorphisms for Resistance to Abnormal Vertical Growth in Macadamia
title_fullStr Discovery of Single Nucleotide Polymorphisms for Resistance to Abnormal Vertical Growth in Macadamia
title_full_unstemmed Discovery of Single Nucleotide Polymorphisms for Resistance to Abnormal Vertical Growth in Macadamia
title_short Discovery of Single Nucleotide Polymorphisms for Resistance to Abnormal Vertical Growth in Macadamia
title_sort discovery of single nucleotide polymorphisms for resistance to abnormal vertical growth in macadamia
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8739493/
https://www.ncbi.nlm.nih.gov/pubmed/35003155
http://dx.doi.org/10.3389/fpls.2021.756815
work_keys_str_mv AT zakeelmohamedcassimmohamed discoveryofsinglenucleotidepolymorphismsforresistancetoabnormalverticalgrowthinmacadamia
AT alammobashwer discoveryofsinglenucleotidepolymorphismsforresistancetoabnormalverticalgrowthinmacadamia
AT geeringandrewdw discoveryofsinglenucleotidepolymorphismsforresistancetoabnormalverticalgrowthinmacadamia
AT toppbruce discoveryofsinglenucleotidepolymorphismsforresistancetoabnormalverticalgrowthinmacadamia
AT akinsanmiolufemia discoveryofsinglenucleotidepolymorphismsforresistancetoabnormalverticalgrowthinmacadamia