Cargando…
The Discrete Gaussian Expectation Maximization (Gradient) Algorithm for Differential Privacy
In this paper, we give a modified gradient EM algorithm; it can protect the privacy of sensitive data by adding discrete Gaussian mechanism noise. Specifically, it makes the high-dimensional data easier to process mainly by scaling, truncating, noise multiplication, and smoothing steps on the data....
Autor principal: | Wu, Weisan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8739528/ https://www.ncbi.nlm.nih.gov/pubmed/35003248 http://dx.doi.org/10.1155/2021/7962489 |
Ejemplares similares
-
A federated learning differential privacy algorithm for non-Gaussian heterogeneous data
por: Yang, Xinyu, et al.
Publicado: (2023) -
Expectation-Maximization Algorithm for the Calibration of Complex Simulator Using a Gaussian Process Emulator
por: Seo, Yun Am, et al.
Publicado: (2020) -
A Batch Rival Penalized Expectation-Maximization Algorithm for Gaussian Mixture Clustering with Automatic Model Selection
por: Wen, Jiechang, et al.
Publicado: (2012) -
Differential privacy fuzzy C-means clustering algorithm based on gaussian kernel function
por: Zhang, Yaling, et al.
Publicado: (2021) -
Differential Privacy via Haar Wavelet Transform and Gaussian Mechanism for Range Query
por: Chen, Dong, et al.
Publicado: (2022)