Cargando…

Preventive screening for intracranial aneurysms

BACKGROUND: Subarachnoid hemorrhage from rupture of an intracranial aneurysm (aneurysmal subarachnoid hemorrhage) is a devastating subset of stroke. Since brain damage from the initial hemorrhage is a major cause for the poor outcome after aneurysmal subarachnoid hemorrhage, prevention of aneurysmal...

Descripción completa

Detalles Bibliográficos
Autores principales: Rinkel, Gabriel JE, Ruigrok, Ynte M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8739572/
https://www.ncbi.nlm.nih.gov/pubmed/34042530
http://dx.doi.org/10.1177/17474930211024584
Descripción
Sumario:BACKGROUND: Subarachnoid hemorrhage from rupture of an intracranial aneurysm (aneurysmal subarachnoid hemorrhage) is a devastating subset of stroke. Since brain damage from the initial hemorrhage is a major cause for the poor outcome after aneurysmal subarachnoid hemorrhage, prevention of aneurysmal subarachnoid hemorrhage has the highest potential to prevent poor outcome from aneurysmal subarachnoid hemorrhage. AIM: In this review, we describe the groups at high risk of aneurysmal subarachnoid hemorrhage who may benefit from preventive screening for unruptured intracranial aneurysms followed by preventive treatment of unruptured intracranial aneurysms found. Furthermore, we describe the advantages and disadvantages of screening and advise how to perform counseling on screening. SUMMARY OF REVIEW: Modeling studies show that persons with two or more affected first-degree relatives with aneurysmal subarachnoid hemorrhage and patients with autosomal dominant polycystic kidney disease (ADPKD) are candidates for screening for unruptured intracranial aneurysms. One modeling study also suggests that persons with only one affected first-degree relative with aneurysmal subarachnoid hemorrhage are also likely candidates for screening. Another group who may benefit from screening are persons ≥35 years who smoke(d) and are hypertensive, given their high lifetime risk of aneurysmal subarachnoid hemorrhage of up to 7%, but the prevalence of unruptured intracranial aneurysms in such persons and the efficiency and cost-effectiveness of screening in this group are not yet known. The ultimate goal of screening is to increase the number of quality years of life of the screening candidates, and therefore the benefits but also many downsides of screening –such as risk of incidental findings, very small unruptured intracranial aneurysms that require regular follow-up, preventive treatment with inherent risk of complications and anxiety – should be discussed with the candidate so that an informed decision can be made before intracranial vessels are imaged. CONCLUSIONS: Several groups of persons who may benefit from screening have been identified, but since these constitute only a minority of all aneurysmal subarachnoid hemorrhage patients, additional high-risk groups still need to be identified. Further research is also needed to identify persons at low or high risk of aneurysmal development and rupture within the groups identified thus far to improve the efficiency of screening. Moreover, if new medical treatment strategies that can reduce the risk of rupture of unruptured intracranial aneurysm become available, the groups of persons who may benefit from screening could increase considerably.