Cargando…
Automatic wide complex tachycardia differentiation using mathematically synthesized vectorcardiogram signals
BACKGROUND: Automated wide complex tachycardia (WCT) differentiation into ventricular tachycardia (VT) and supraventricular wide complex tachycardia (SWCT) may be accomplished using novel calculations that quantify the extent of mean electrical vector changes between the WCT and baseline electrocard...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8739609/ https://www.ncbi.nlm.nih.gov/pubmed/34562325 http://dx.doi.org/10.1111/anec.12890 |
_version_ | 1784629138594725888 |
---|---|
author | Kashou, Anthony H. LoCoco, Sarah McGill, Trevon D. Evenson, Christopher M. Deshmukh, Abhishek J. Hodge, David O. Cooper, Daniel H. Sodhi, Sandeep S. Cuculich, Phillip S. Asirvatham, Samuel J. Noseworthy, Peter A. DeSimone, Christopher V. May, Adam M. |
author_facet | Kashou, Anthony H. LoCoco, Sarah McGill, Trevon D. Evenson, Christopher M. Deshmukh, Abhishek J. Hodge, David O. Cooper, Daniel H. Sodhi, Sandeep S. Cuculich, Phillip S. Asirvatham, Samuel J. Noseworthy, Peter A. DeSimone, Christopher V. May, Adam M. |
author_sort | Kashou, Anthony H. |
collection | PubMed |
description | BACKGROUND: Automated wide complex tachycardia (WCT) differentiation into ventricular tachycardia (VT) and supraventricular wide complex tachycardia (SWCT) may be accomplished using novel calculations that quantify the extent of mean electrical vector changes between the WCT and baseline electrocardiogram (ECG). At present, it is unknown whether quantifying mean electrical vector changes within three orthogonal vectorcardiogram (VCG) leads (X, Y, and Z leads) can improve automated VT and SWCT classification. METHODS: A derivation cohort of paired WCT and baseline ECGs was used to derive five logistic regression models: (i) one novel WCT differentiation model (i.e., VCG Model), (ii) three previously developed WCT differentiation models (i.e., WCT Formula, VT Prediction Model, and WCT Formula II), and (iii) one “all‐inclusive” model (i.e., Hybrid Model). A separate validation cohort of paired WCT and baseline ECGs was used to trial and compare each model's performance. RESULTS: The VCG Model, composed of WCT QRS duration, baseline QRS duration, absolute change in QRS duration, X‐lead QRS amplitude change, Y‐lead QRS amplitude change, and Z‐lead QRS amplitude change, demonstrated effective WCT differentiation (area under the curve [AUC] 0.94) for the derivation cohort. For the validation cohort, the diagnostic performance of the VCG Model (AUC 0.94) was similar to that achieved by the WCT Formula (AUC 0.95), VT Prediction Model (AUC 0.91), WCT Formula II (AUC 0.94), and Hybrid Model (AUC 0.95). CONCLUSION: Custom calculations derived from mathematically synthesized VCG signals may be used to formulate an effective means to differentiate WCTs automatically. |
format | Online Article Text |
id | pubmed-8739609 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-87396092022-01-12 Automatic wide complex tachycardia differentiation using mathematically synthesized vectorcardiogram signals Kashou, Anthony H. LoCoco, Sarah McGill, Trevon D. Evenson, Christopher M. Deshmukh, Abhishek J. Hodge, David O. Cooper, Daniel H. Sodhi, Sandeep S. Cuculich, Phillip S. Asirvatham, Samuel J. Noseworthy, Peter A. DeSimone, Christopher V. May, Adam M. Ann Noninvasive Electrocardiol New Technologies BACKGROUND: Automated wide complex tachycardia (WCT) differentiation into ventricular tachycardia (VT) and supraventricular wide complex tachycardia (SWCT) may be accomplished using novel calculations that quantify the extent of mean electrical vector changes between the WCT and baseline electrocardiogram (ECG). At present, it is unknown whether quantifying mean electrical vector changes within three orthogonal vectorcardiogram (VCG) leads (X, Y, and Z leads) can improve automated VT and SWCT classification. METHODS: A derivation cohort of paired WCT and baseline ECGs was used to derive five logistic regression models: (i) one novel WCT differentiation model (i.e., VCG Model), (ii) three previously developed WCT differentiation models (i.e., WCT Formula, VT Prediction Model, and WCT Formula II), and (iii) one “all‐inclusive” model (i.e., Hybrid Model). A separate validation cohort of paired WCT and baseline ECGs was used to trial and compare each model's performance. RESULTS: The VCG Model, composed of WCT QRS duration, baseline QRS duration, absolute change in QRS duration, X‐lead QRS amplitude change, Y‐lead QRS amplitude change, and Z‐lead QRS amplitude change, demonstrated effective WCT differentiation (area under the curve [AUC] 0.94) for the derivation cohort. For the validation cohort, the diagnostic performance of the VCG Model (AUC 0.94) was similar to that achieved by the WCT Formula (AUC 0.95), VT Prediction Model (AUC 0.91), WCT Formula II (AUC 0.94), and Hybrid Model (AUC 0.95). CONCLUSION: Custom calculations derived from mathematically synthesized VCG signals may be used to formulate an effective means to differentiate WCTs automatically. John Wiley and Sons Inc. 2021-09-25 /pmc/articles/PMC8739609/ /pubmed/34562325 http://dx.doi.org/10.1111/anec.12890 Text en © 2021 The Authors. Annals of Noninvasive Electrocardiology published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | New Technologies Kashou, Anthony H. LoCoco, Sarah McGill, Trevon D. Evenson, Christopher M. Deshmukh, Abhishek J. Hodge, David O. Cooper, Daniel H. Sodhi, Sandeep S. Cuculich, Phillip S. Asirvatham, Samuel J. Noseworthy, Peter A. DeSimone, Christopher V. May, Adam M. Automatic wide complex tachycardia differentiation using mathematically synthesized vectorcardiogram signals |
title | Automatic wide complex tachycardia differentiation using mathematically synthesized vectorcardiogram signals |
title_full | Automatic wide complex tachycardia differentiation using mathematically synthesized vectorcardiogram signals |
title_fullStr | Automatic wide complex tachycardia differentiation using mathematically synthesized vectorcardiogram signals |
title_full_unstemmed | Automatic wide complex tachycardia differentiation using mathematically synthesized vectorcardiogram signals |
title_short | Automatic wide complex tachycardia differentiation using mathematically synthesized vectorcardiogram signals |
title_sort | automatic wide complex tachycardia differentiation using mathematically synthesized vectorcardiogram signals |
topic | New Technologies |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8739609/ https://www.ncbi.nlm.nih.gov/pubmed/34562325 http://dx.doi.org/10.1111/anec.12890 |
work_keys_str_mv | AT kashouanthonyh automaticwidecomplextachycardiadifferentiationusingmathematicallysynthesizedvectorcardiogramsignals AT lococosarah automaticwidecomplextachycardiadifferentiationusingmathematicallysynthesizedvectorcardiogramsignals AT mcgilltrevond automaticwidecomplextachycardiadifferentiationusingmathematicallysynthesizedvectorcardiogramsignals AT evensonchristopherm automaticwidecomplextachycardiadifferentiationusingmathematicallysynthesizedvectorcardiogramsignals AT deshmukhabhishekj automaticwidecomplextachycardiadifferentiationusingmathematicallysynthesizedvectorcardiogramsignals AT hodgedavido automaticwidecomplextachycardiadifferentiationusingmathematicallysynthesizedvectorcardiogramsignals AT cooperdanielh automaticwidecomplextachycardiadifferentiationusingmathematicallysynthesizedvectorcardiogramsignals AT sodhisandeeps automaticwidecomplextachycardiadifferentiationusingmathematicallysynthesizedvectorcardiogramsignals AT cuculichphillips automaticwidecomplextachycardiadifferentiationusingmathematicallysynthesizedvectorcardiogramsignals AT asirvathamsamuelj automaticwidecomplextachycardiadifferentiationusingmathematicallysynthesizedvectorcardiogramsignals AT noseworthypetera automaticwidecomplextachycardiadifferentiationusingmathematicallysynthesizedvectorcardiogramsignals AT desimonechristopherv automaticwidecomplextachycardiadifferentiationusingmathematicallysynthesizedvectorcardiogramsignals AT mayadamm automaticwidecomplextachycardiadifferentiationusingmathematicallysynthesizedvectorcardiogramsignals |