Cargando…
A hybrid machine learning approach for detecting unprecedented DDoS attacks
Service availability plays a vital role on computer networks, against which Distributed Denial of Service (DDoS) attacks are an increasingly growing threat each year. Machine learning (ML) is a promising approach widely used for DDoS detection, which obtains satisfactory results for pre-known attack...
Autores principales: | Najafimehr, Mohammad, Zarifzadeh, Sajjad, Mostafavi, Seyedakbar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8739683/ https://www.ncbi.nlm.nih.gov/pubmed/35017789 http://dx.doi.org/10.1007/s11227-021-04253-x |
Ejemplares similares
-
KS-DDoS: Kafka streams-based classification approach for DDoS attacks
por: Patil, Nilesh Vishwasrao, et al.
Publicado: (2022) -
SSK-DDoS: distributed stream processing framework based classification system for DDoS attacks
por: Patil, Nilesh Vishwasrao, et al.
Publicado: (2022) -
Deep learning approaches for detecting DDoS attacks: a systematic review
por: Mittal, Meenakshi, et al.
Publicado: (2022) -
DDoS attacks hit hard and fast
Publicado: (2020) -
DDoS attacks: evolution, detection, prevention, reaction, and tolerance
por: Bhattacharyya, Dhruba Kumar, et al.
Publicado: (2016)