Cargando…
Learning Cortical Parcellations Using Graph Neural Networks
Deep learning has been applied to magnetic resonance imaging (MRI) for a variety of purposes, ranging from the acceleration of image acquisition and image denoising to tissue segmentation and disease diagnosis. Convolutional neural networks have been particularly useful for analyzing MRI data due to...
Autores principales: | Eschenburg, Kristian M., Grabowski, Thomas J., Haynor, David R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8739886/ https://www.ncbi.nlm.nih.gov/pubmed/35002611 http://dx.doi.org/10.3389/fnins.2021.797500 |
Ejemplares similares
-
Visual cortical areas of the mouse: comparison of parcellation and network structure with primates
por: Laramée, Marie-Eve, et al.
Publicado: (2015) -
Connectivity-based Cortical Parcellation via Contrastive Learning on Spatial-Graph Convolution
por: You, Peiting, et al.
Publicado: (2022) -
Unrevealing Reliable Cortical Parcellation of Individual Brains Using Resting-State Functional Magnetic Resonance Imaging and Masked Graph Convolutions
por: Qiu, Wenyuan, et al.
Publicado: (2022) -
Parcellating Cortical Functional Networks in Individuals
por: Wang, Danhong, et al.
Publicado: (2015) -
Cerebellar Functional Parcellation Using Sparse Dictionary Learning Clustering
por: Wang, Changqing, et al.
Publicado: (2016)