Cargando…
Lessons Learnt From Using the Machine Learning Random Forest Algorithm to Predict Virulence in Streptococcus pyogenes
Group A Streptococcus is a globally significant human pathogen. The extensive variability of the GAS genome, virulence phenotypes and clinical outcomes, render it an excellent candidate for the application of genotype-phenotype association studies in the era of whole-genome sequencing. We have catal...
Autores principales: | Buckley, Sean J., Harvey, Robert J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8739889/ https://www.ncbi.nlm.nih.gov/pubmed/35004362 http://dx.doi.org/10.3389/fcimb.2021.809560 |
Ejemplares similares
-
Modeling Streptococcus pyogenes Pharyngeal Colonization in the Mouse
por: Gogos, Artemis, et al.
Publicado: (2019) -
Role of serotype and virulence determinants of Streptococcus pyogenes biofilm bacteria in internalization and persistence in epithelial cells in vitro
por: Alamiri, Feiruz, et al.
Publicado: (2023) -
Application of the random forest algorithm to Streptococcus pyogenes response regulator allele variation: from machine learning to evolutionary models
por: Buckley, Sean J., et al.
Publicado: (2021) -
Plasma Protein Layer Concealment Protects Streptococcus pyogenes From Innate Immune Attack
por: Jagau, Hilger, et al.
Publicado: (2021) -
Case Report: Septic arthritis in children caused by Streptococcus pyogenes–rational use of antibiotics
por: Yu, Dingle, et al.
Publicado: (2023)