Cargando…
Embedding Functional Brain Networks in Low Dimensional Spaces Using Manifold Learning Techniques
Background: fMRI data is inherently high-dimensional and difficult to visualize. A recent trend has been to find spaces of lower dimensionality where functional brain networks can be projected onto manifolds as individual data points, leading to new ways to analyze and interpret the data. Here, we i...
Autores principales: | Casanova, Ramon, Lyday, Robert G., Bahrami, Mohsen, Burdette, Jonathan H., Simpson, Sean L., Laurienti, Paul J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8739961/ https://www.ncbi.nlm.nih.gov/pubmed/35002665 http://dx.doi.org/10.3389/fninf.2021.740143 |
Ejemplares similares
-
Using Low-Dimensional Manifolds to Map Relationships Between Dynamic Brain Networks
por: Bahrami, Mohsen, et al.
Publicado: (2019) -
Models of the Aging Brain Structure and Individual Decline
por: Ziegler, Gabriel, et al.
Publicado: (2012) -
Corrigendum: Event- and Time-Driven Techniques Using Parallel CPU-GPU Co-processing for Spiking Neural Networks
por: Naveros, Francisco, et al.
Publicado: (2018) -
Time-Frequency Representations of Brain Oscillations: Which One Is Better?
por: Bârzan, Harald, et al.
Publicado: (2022) -
Conditional Mutual Information Maps as Descriptors of Net Connectivity Levels in the Brain
por: Salvador, Raymond, et al.
Publicado: (2010)