Cargando…
Network Analyses Based on Machine Learning Methods to Quantify Effects of Peptide–Protein Complexes as Drug Targets Using Cinnamon in Cardiovascular Diseases and Metabolic Syndrome as a Case Study
Peptide–protein complexes play important roles in multiple diseases such as cardiovascular diseases (CVDs) and metabolic syndrome (MetS). The peptides may be the key molecules in the designing of inhibitors or drug targets. Many Chinese traditional drugs are shown to play various roles in different...
Autores principales: | Wang, Yingying, Wang, Lili, Liu, Yinhe, Li, Keshen, Zhao, Honglei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8740135/ https://www.ncbi.nlm.nih.gov/pubmed/35003234 http://dx.doi.org/10.3389/fgene.2021.816131 |
Ejemplares similares
-
Editorial: Machine learning for peptide structure, function, and design
por: Ge, Ruiquan, et al.
Publicado: (2022) -
i2APP: A Two-Step Machine Learning Framework For Antiparasitic Peptides Identification
por: Jiang, Minchao, et al.
Publicado: (2022) -
Novel methods for quantifying individual host response to infectious pathogens for genetic analyses
por: Doeschl-Wilson, Andrea B., et al.
Publicado: (2012) -
Machine learning-based transcriptome analysis of lipid metabolism biomarkers for the survival prediction in hepatocellular carcinoma
por: Xiong, Ronghong, et al.
Publicado: (2022) -
Reaching the End-Game for GWAS: Machine Learning Approaches for the Prioritization of Complex Disease Loci
por: Nicholls, Hannah L., et al.
Publicado: (2020)