Cargando…
Dynamical Characteristics of Recurrent Neuronal Networks Are Robust Against Low Synaptic Weight Resolution
The representation of the natural-density, heterogeneous connectivity of neuronal network models at relevant spatial scales remains a challenge for Computational Neuroscience and Neuromorphic Computing. In particular, the memory demands imposed by the vast number of synapses in brain-scale network s...
Autores principales: | Dasbach, Stefan, Tetzlaff, Tom, Diesmann, Markus, Senk, Johanna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8740282/ https://www.ncbi.nlm.nih.gov/pubmed/35002599 http://dx.doi.org/10.3389/fnins.2021.757790 |
Ejemplares similares
-
A Modular Workflow for Performance Benchmarking of Neuronal Network Simulations
por: Albers, Jasper, et al.
Publicado: (2022) -
A unified view on weakly correlated recurrent networks
por: Grytskyy, Dmytro, et al.
Publicado: (2013) -
VIOLA—A Multi-Purpose and Web-Based Visualization Tool for Neuronal-Network Simulation Output
por: Senk, Johanna, et al.
Publicado: (2018) -
Finite Post Synaptic Potentials Cause a Fast Neuronal Response
por: Helias, Moritz, et al.
Publicado: (2011) -
The Correlation Structure of Local Neuronal Networks Intrinsically Results from Recurrent Dynamics
por: Helias, Moritz, et al.
Publicado: (2014)