Cargando…
Achieving robust somatic mutation detection with deep learning models derived from reference data sets of a cancer sample
BACKGROUND: Accurate detection of somatic mutations is challenging but critical in understanding cancer formation, progression, and treatment. We recently proposed NeuSomatic, the first deep convolutional neural network-based somatic mutation detection approach, and demonstrated performance advantag...
Autores principales: | Sahraeian, Sayed Mohammad Ebrahim, Fang, Li Tai, Karagiannis, Konstantinos, Moos, Malcolm, Smith, Sean, Santana-Quintero, Luis, Xiao, Chunlin, Colgan, Michael, Hong, Huixiao, Mohiyuddin, Marghoob, Xiao, Wenming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8740374/ https://www.ncbi.nlm.nih.gov/pubmed/34996510 http://dx.doi.org/10.1186/s13059-021-02592-9 |
Ejemplares similares
-
Deep convolutional neural networks for accurate somatic mutation detection
por: Sahraeian, Sayed Mohammad Ebrahim, et al.
Publicado: (2019) -
Hidden biases in germline structural variant detection
por: Khayat, Michael M., et al.
Publicado: (2021) -
Personalized genome assembly for accurate cancer somatic mutation discovery using tumor-normal paired reference samples
por: Xiao, Chunlin, et al.
Publicado: (2022) -
ecTMB: a robust method to estimate and classify tumor mutational burden
por: Yao, Lijing, et al.
Publicado: (2020) -
An ensemble approach to accurately detect somatic mutations using SomaticSeq
por: Fang, Li Tai, et al.
Publicado: (2015)