Cargando…
Effects of wall compliance and light-curing protocol on wall deflection of simulated cavities in bulk-fill composite restoration
BACKGROUND/PURPOSE: Cuspal deflections in composite restoration have been investigated with considering wall compliance of human tooth cavity and light-curing protocol. The purpose of this study was to investigate effects of mold wall compliance and radiant emittance of LED light on the wall deflect...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Association for Dental Sciences of the Republic of China
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8740399/ https://www.ncbi.nlm.nih.gov/pubmed/35028043 http://dx.doi.org/10.1016/j.jds.2021.03.017 |
_version_ | 1784629305111740416 |
---|---|
author | Lee, Chang-Ha Lee, In-Bog |
author_facet | Lee, Chang-Ha Lee, In-Bog |
author_sort | Lee, Chang-Ha |
collection | PubMed |
description | BACKGROUND/PURPOSE: Cuspal deflections in composite restoration have been investigated with considering wall compliance of human tooth cavity and light-curing protocol. The purpose of this study was to investigate effects of mold wall compliance and radiant emittance of LED light on the wall deflection of simulated aluminum mold cavities restored with a bulk-fill composite. MATERIALS AND METHODS: Sixty aluminum molds simulating a class II mesio-occluso-distal (MOD) cavity (6 W × 8 L × 4 D mm; W, width; L, length; D, Depth) were prepared and allocated to three groups with varying mold wall thicknesses of 1, 2, and 3 mm. The molds were bulk-filled with a bulk-fill composite and photo-cured. Four light-curing protocols were used: three duty ratios/exposure times: 100%/20 s, 50%/40 s, or an increasing mode (0 → 100%)/40 s with a pulse width modulated (PWM) LED curing light and one 20 s exposure time with a commercial LED light. RESULTS: Mean mold wall deflection at 2000 s decreased with increasing mold wall thickness (1, 2, and 3 mm) (p < 0.05). Wall deflections with 1- and 2-mm-thick molds exhibited no statistically significant differences among light-curing protocols (p > 0.05). However, in the 3-mm-thick mold, wall deflections with low radiant emittance were significantly lower than those with high radiant emittance (p < 0.05). CONCLUSION: In composite restoration of class II MOD cavities, lowering the radiant emittance of LED light can reduce the mold wall deflection only in low compliance cavities. |
format | Online Article Text |
id | pubmed-8740399 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Association for Dental Sciences of the Republic of China |
record_format | MEDLINE/PubMed |
spelling | pubmed-87403992022-01-12 Effects of wall compliance and light-curing protocol on wall deflection of simulated cavities in bulk-fill composite restoration Lee, Chang-Ha Lee, In-Bog J Dent Sci Original Article BACKGROUND/PURPOSE: Cuspal deflections in composite restoration have been investigated with considering wall compliance of human tooth cavity and light-curing protocol. The purpose of this study was to investigate effects of mold wall compliance and radiant emittance of LED light on the wall deflection of simulated aluminum mold cavities restored with a bulk-fill composite. MATERIALS AND METHODS: Sixty aluminum molds simulating a class II mesio-occluso-distal (MOD) cavity (6 W × 8 L × 4 D mm; W, width; L, length; D, Depth) were prepared and allocated to three groups with varying mold wall thicknesses of 1, 2, and 3 mm. The molds were bulk-filled with a bulk-fill composite and photo-cured. Four light-curing protocols were used: three duty ratios/exposure times: 100%/20 s, 50%/40 s, or an increasing mode (0 → 100%)/40 s with a pulse width modulated (PWM) LED curing light and one 20 s exposure time with a commercial LED light. RESULTS: Mean mold wall deflection at 2000 s decreased with increasing mold wall thickness (1, 2, and 3 mm) (p < 0.05). Wall deflections with 1- and 2-mm-thick molds exhibited no statistically significant differences among light-curing protocols (p > 0.05). However, in the 3-mm-thick mold, wall deflections with low radiant emittance were significantly lower than those with high radiant emittance (p < 0.05). CONCLUSION: In composite restoration of class II MOD cavities, lowering the radiant emittance of LED light can reduce the mold wall deflection only in low compliance cavities. Association for Dental Sciences of the Republic of China 2022-01 2021-05-10 /pmc/articles/PMC8740399/ /pubmed/35028043 http://dx.doi.org/10.1016/j.jds.2021.03.017 Text en © 2021 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier B.V. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Lee, Chang-Ha Lee, In-Bog Effects of wall compliance and light-curing protocol on wall deflection of simulated cavities in bulk-fill composite restoration |
title | Effects of wall compliance and light-curing protocol on wall deflection of simulated cavities in bulk-fill composite restoration |
title_full | Effects of wall compliance and light-curing protocol on wall deflection of simulated cavities in bulk-fill composite restoration |
title_fullStr | Effects of wall compliance and light-curing protocol on wall deflection of simulated cavities in bulk-fill composite restoration |
title_full_unstemmed | Effects of wall compliance and light-curing protocol on wall deflection of simulated cavities in bulk-fill composite restoration |
title_short | Effects of wall compliance and light-curing protocol on wall deflection of simulated cavities in bulk-fill composite restoration |
title_sort | effects of wall compliance and light-curing protocol on wall deflection of simulated cavities in bulk-fill composite restoration |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8740399/ https://www.ncbi.nlm.nih.gov/pubmed/35028043 http://dx.doi.org/10.1016/j.jds.2021.03.017 |
work_keys_str_mv | AT leechangha effectsofwallcomplianceandlightcuringprotocolonwalldeflectionofsimulatedcavitiesinbulkfillcompositerestoration AT leeinbog effectsofwallcomplianceandlightcuringprotocolonwalldeflectionofsimulatedcavitiesinbulkfillcompositerestoration |