Cargando…
Predicting continuous ground reaction forces from accelerometers during uphill and downhill running: a recurrent neural network solution
BACKGROUND: Ground reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a laboratory environment. Previous studies have used neural networks to predict GRF waveforms during running from wearable device data, but these predictions are li...
Autores principales: | Alcantara, Ryan S., Edwards, W. Brent, Millet, Guillaume Y., Grabowski, Alena M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8740512/ https://www.ncbi.nlm.nih.gov/pubmed/35036107 http://dx.doi.org/10.7717/peerj.12752 |
Ejemplares similares
-
A scalable discrete-time survival model for neural networks
por: Gensheimer, Michael F., et al.
Publicado: (2019) -
Breast cancer detection using deep convolutional neural networks and support vector machines
por: Ragab, Dina A., et al.
Publicado: (2019) -
Influence of tweets and diversification on serendipitous research paper recommender systems
por: Nishioka, Chifumi, et al.
Publicado: (2020) -
Nearest labelset using double distances for multi-label classification
por: Gweon, Hyukjun, et al.
Publicado: (2019) -
A systematic review on literature-based discovery workflow
por: Thilakaratne, Menasha, et al.
Publicado: (2019)