Cargando…
On the sparsity of fitness functions and implications for learning
Fitness functions map biological sequences to a scalar property of interest. Accurate estimation of these functions yields biological insight and sets the foundation for model-based sequence design. However, the fitness datasets available to learn these functions are typically small relative to the...
Autores principales: | Brookes, David H., Aghazadeh, Amirali, Listgarten, Jennifer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8740588/ https://www.ncbi.nlm.nih.gov/pubmed/34937698 http://dx.doi.org/10.1073/pnas.2109649118 |
Ejemplares similares
-
Epistatic Net allows the sparse spectral regularization of deep neural networks for inferring fitness functions
por: Aghazadeh, Amirali, et al.
Publicado: (2021) -
Sparsity-Aware Noise Subspace Fitting for DOA Estimation
por: Zheng, Chundi, et al.
Publicado: (2019) -
Statistical learning with sparsity: the lasso and generalizations
por: Hastie, Trevor, et al.
Publicado: (2015) -
Backpropagation With Sparsity Regularization for Spiking Neural Network Learning
por: Yan, Yulong, et al.
Publicado: (2022) -
CRISPRL and: Interpretable large-scale inference of DNA repair landscape based on a spectral approach
por: Aghazadeh, Amirali, et al.
Publicado: (2020)