Cargando…

Functional observability and target state estimation in large-scale networks

The quantitative understanding and precise control of complex dynamical systems can only be achieved by observing their internal states via measurement and/or estimation. In large-scale dynamical networks, it is often difficult or physically impossible to have enough sensor nodes to make the system...

Descripción completa

Detalles Bibliográficos
Autores principales: Montanari, Arthur N., Duan, Chao, Aguirre, Luis A., Motter, Adilson E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8740740/
https://www.ncbi.nlm.nih.gov/pubmed/34969842
http://dx.doi.org/10.1073/pnas.2113750119
_version_ 1784629365277982720
author Montanari, Arthur N.
Duan, Chao
Aguirre, Luis A.
Motter, Adilson E.
author_facet Montanari, Arthur N.
Duan, Chao
Aguirre, Luis A.
Motter, Adilson E.
author_sort Montanari, Arthur N.
collection PubMed
description The quantitative understanding and precise control of complex dynamical systems can only be achieved by observing their internal states via measurement and/or estimation. In large-scale dynamical networks, it is often difficult or physically impossible to have enough sensor nodes to make the system fully observable. Even if the system is in principle observable, high dimensionality poses fundamental limits on the computational tractability and performance of a full-state observer. To overcome the curse of dimensionality, we instead require the system to be functionally observable, meaning that a targeted subset of state variables can be reconstructed from the available measurements. Here, we develop a graph-based theory of functional observability, which leads to highly scalable algorithms to 1) determine the minimal set of required sensors and 2) design the corresponding state observer of minimum order. Compared with the full-state observer, the proposed functional observer achieves the same estimation quality with substantially less sensing and fewer computational resources, making it suitable for large-scale networks. We apply the proposed methods to the detection of cyberattacks in power grids from limited phase measurement data and the inference of the prevalence rate of infection during an epidemic under limited testing conditions. The applications demonstrate that the functional observer can significantly scale up our ability to explore otherwise inaccessible dynamical processes on complex networks.
format Online
Article
Text
id pubmed-8740740
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-87407402022-01-25 Functional observability and target state estimation in large-scale networks Montanari, Arthur N. Duan, Chao Aguirre, Luis A. Motter, Adilson E. Proc Natl Acad Sci U S A Physical Sciences The quantitative understanding and precise control of complex dynamical systems can only be achieved by observing their internal states via measurement and/or estimation. In large-scale dynamical networks, it is often difficult or physically impossible to have enough sensor nodes to make the system fully observable. Even if the system is in principle observable, high dimensionality poses fundamental limits on the computational tractability and performance of a full-state observer. To overcome the curse of dimensionality, we instead require the system to be functionally observable, meaning that a targeted subset of state variables can be reconstructed from the available measurements. Here, we develop a graph-based theory of functional observability, which leads to highly scalable algorithms to 1) determine the minimal set of required sensors and 2) design the corresponding state observer of minimum order. Compared with the full-state observer, the proposed functional observer achieves the same estimation quality with substantially less sensing and fewer computational resources, making it suitable for large-scale networks. We apply the proposed methods to the detection of cyberattacks in power grids from limited phase measurement data and the inference of the prevalence rate of infection during an epidemic under limited testing conditions. The applications demonstrate that the functional observer can significantly scale up our ability to explore otherwise inaccessible dynamical processes on complex networks. National Academy of Sciences 2021-12-28 2022-01-04 /pmc/articles/PMC8740740/ /pubmed/34969842 http://dx.doi.org/10.1073/pnas.2113750119 Text en Copyright © 2021 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
Montanari, Arthur N.
Duan, Chao
Aguirre, Luis A.
Motter, Adilson E.
Functional observability and target state estimation in large-scale networks
title Functional observability and target state estimation in large-scale networks
title_full Functional observability and target state estimation in large-scale networks
title_fullStr Functional observability and target state estimation in large-scale networks
title_full_unstemmed Functional observability and target state estimation in large-scale networks
title_short Functional observability and target state estimation in large-scale networks
title_sort functional observability and target state estimation in large-scale networks
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8740740/
https://www.ncbi.nlm.nih.gov/pubmed/34969842
http://dx.doi.org/10.1073/pnas.2113750119
work_keys_str_mv AT montanariarthurn functionalobservabilityandtargetstateestimationinlargescalenetworks
AT duanchao functionalobservabilityandtargetstateestimationinlargescalenetworks
AT aguirreluisa functionalobservabilityandtargetstateestimationinlargescalenetworks
AT motteradilsone functionalobservabilityandtargetstateestimationinlargescalenetworks