Cargando…
Efficacy and Safety of Anticoagulation Treatment in COVID-19 Patient Subgroups Identified by Clinical-Based Stratification and Unsupervised Machine Learning: A Matched Cohort Study
Objective: To explore the efficacy of anticoagulation in improving outcomes and safety of Coronavirus disease 2019 (COVID-19) patients in subgroups identified by clinical-based stratification and unsupervised machine learning. Methods: This single-center retrospective cohort study unselectively revi...
Autores principales: | Bian, Yi, Le, Yue, Du, Han, Chen, Junfang, Zhang, Ping, He, Zhigang, Wang, Ye, Yu, Shanshan, Fang, Yu, Yu, Gang, Ling, Jianmin, Feng, Yikuan, Wei, Sheng, Huang, Jiao, Xiao, Liuniu, Zheng, Yingfang, Yu, Zhen, Li, Shusheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8740912/ https://www.ncbi.nlm.nih.gov/pubmed/35004751 http://dx.doi.org/10.3389/fmed.2021.786414 |
Ejemplares similares
-
The modified NUTRIC score can be used for nutritional risk assessment as well as prognosis prediction in critically ill COVID-19 patients
por: Zhang, Ping, et al.
Publicado: (2021) -
Microbiome Features Differentiating Unsupervised-Stratification-Based Clusters of Patients with Abnormal Glycometabolism
por: Xu, Ting, et al.
Publicado: (2023) -
Identifying novel subgroups in heart failure patients with unsupervised machine learning: A scoping review
por: Sun, Jin, et al.
Publicado: (2022) -
Unsupervised data-driven stratification of mentalizing heterogeneity in autism
por: Lombardo, Michael V., et al.
Publicado: (2016) -
Unsupervised neurobiology-driven stratification of clinical heterogeneity in depression
por: Colombo, F., et al.
Publicado: (2023)