Cargando…
Data-driven methods for dengue prediction and surveillance using real-world and Big Data: A systematic review
BACKGROUND: Traditionally, dengue surveillance is based on case reporting to a central health agency. However, the delay between a case and its notification can limit the system responsiveness. Machine learning methods have been developed to reduce the reporting delays and to predict outbreaks, base...
Autores principales: | Sylvestre, Emmanuelle, Joachim, Clarisse, Cécilia-Joseph, Elsa, Bouzillé, Guillaume, Campillo-Gimenez, Boris, Cuggia, Marc, Cabié, André |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8740963/ https://www.ncbi.nlm.nih.gov/pubmed/34995281 http://dx.doi.org/10.1371/journal.pntd.0010056 |
Ejemplares similares
-
The Role of Heterogenous Real-world Data for Dengue Surveillance in Martinique: Observational Retrospective Study
por: Sylvestre, Emmanuelle, et al.
Publicado: (2022) -
Real Time Influenza Monitoring Using Hospital Big Data in Combination with Machine Learning Methods: Comparison Study
por: Poirier, Canelle, et al.
Publicado: (2018) -
Combining information from a clinical data warehouse and a pharmaceutical database to generate a framework to detect comorbidities in electronic health records
por: Sylvestre, Emmanuelle, et al.
Publicado: (2018) -
Big data-driven world
por: Kravets, Alla G
Publicado: (2018) -
Leveraging National Claims and Hospital Big Data: Cohort Study on a Statin-Drug Interaction Use Case
por: Bannay, Aurélie, et al.
Publicado: (2021)