Cargando…
Improved log-Gaussian approximation for over-dispersed Poisson regression: Application to spatial analysis of COVID-19
In the era of open data, Poisson and other count regression models are increasingly important. Still, conventional Poisson regression has remaining issues in terms of identifiability and computational efficiency. Especially, due to an identification problem, Poisson regression can be unstable for sm...
Autores principales: | Murakami, Daisuke, Matsui, Tomoko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741021/ https://www.ncbi.nlm.nih.gov/pubmed/34995283 http://dx.doi.org/10.1371/journal.pone.0260836 |
Ejemplares similares
-
Improving Log-Likelihood Ratio Estimation with Bi-Gaussian Approximation under Multiuser Interference Scenarios
por: Fu, Yu, et al.
Publicado: (2021) -
Structural Complexity and Informational Transfer in Spatial Log-Gaussian Cox Processes
por: Medialdea, Adriana, et al.
Publicado: (2021) -
Modeling schistosomiasis spatial risk dynamics over time in Rwanda using zero-inflated Poisson regression
por: Nyandwi, Elias, et al.
Publicado: (2020) -
Spatial analysis of G.f.fuscipes abundance in Uganda using Poisson and Zero-Inflated Poisson regression models
por: Mugenyi, Albert, et al.
Publicado: (2021) -
Probability approximations via the poisson clumping heuristic
por: Aldous, David
Publicado: (1989)