Cargando…
A deep hybrid learning pipeline for accurate diagnosis of ovarian cancer based on nuclear morphology
Nuclear morphological features are potent determining factors for clinical diagnostic approaches adopted by pathologists to analyze the malignant potential of cancer cells. Considering the structural alteration of the nucleus in cancer cells, various groups have developed machine learning techniques...
Autores principales: | Sengupta, Duhita, Ali, Sk Nishan, Bhattacharya, Aditya, Mustafi, Joy, Mukhopadhyay, Asima, Sengupta, Kaushik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741040/ https://www.ncbi.nlm.nih.gov/pubmed/34995293 http://dx.doi.org/10.1371/journal.pone.0261181 |
Ejemplares similares
-
Elevated Levels of Lamin A Promote HR and NHEJ-Mediated Repair Mechanisms in High-Grade Ovarian Serous Carcinoma Cell Line
por: Sengupta, Duhita, et al.
Publicado: (2023) -
Slower diffusion and anomalous association of R453W lamin A protein alter nuclear architecture in AD-EDMD
por: Mukherjee, Chandrayee, et al.
Publicado: (2022) -
Nuclear filaments: role in chromosomal positioning and gene expression
por: Bera, Manindra, et al.
Publicado: (2020) -
FastSurfer - A fast and accurate deep learning based neuroimaging pipeline
por: Henschel, Leonie, et al.
Publicado: (2020) -
Risk of venous thromboembolism and benefits of prophylaxis use in hospitalized medically ill US patients up to 180 days post-hospital discharge
por: Wang, Li, et al.
Publicado: (2011)