Cargando…
Tracking cell lineages in 3D by incremental deep learning
Deep learning is emerging as a powerful approach for bioimage analysis. Its use in cell tracking is limited by the scarcity of annotated data for the training of deep-learning models. Moreover, annotation, training, prediction, and proofreading currently lack a unified user interface. We present ELE...
Autores principales: | Sugawara, Ko, Çevrim, Çağrı, Averof, Michalis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741210/ https://www.ncbi.nlm.nih.gov/pubmed/34989675 http://dx.doi.org/10.7554/eLife.69380 |
Ejemplares similares
-
Is it possible to reconstruct an accurate cell lineage using CRISPR recorders?
por: Salvador-Martínez, Irepan, et al.
Publicado: (2019) -
Crustacean leg regeneration restores complex microanatomy and cell diversity
por: Almazán, Alba, et al.
Publicado: (2022) -
Live imaging reveals the progenitors and cell dynamics of limb regeneration
por: Alwes, Frederike, et al.
Publicado: (2016) -
Oligodendrocyte-lineage cell exocytosis and L-type prostaglandin D synthase promote oligodendrocyte development and myelination
por: Pan, Lin, et al.
Publicado: (2023) -
Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb
por: Wolff, Carsten, et al.
Publicado: (2018)