Cargando…
4-Phenylbutyrate restores localization and membrane repair to human dysferlin mutations
Dysferlinopathies are muscular dystrophies caused by recessive loss-of-function mutations in dysferlin (DYSF), a membrane protein involved in skeletal muscle membrane repair. We describe a cell-based assay in which human DYSF proteins bearing missense mutations are quantitatively assayed for membran...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741482/ https://www.ncbi.nlm.nih.gov/pubmed/35028538 http://dx.doi.org/10.1016/j.isci.2021.103667 |
Sumario: | Dysferlinopathies are muscular dystrophies caused by recessive loss-of-function mutations in dysferlin (DYSF), a membrane protein involved in skeletal muscle membrane repair. We describe a cell-based assay in which human DYSF proteins bearing missense mutations are quantitatively assayed for membrane localization by flow cytometry and identified 64 localization-defective DYSF mutations. Using this platform, we show that the clinically approved drug 4-phenylbutryric acid (4-PBA) partially restores membrane localization to 25 mutations, as well as membrane repair to cultured myotubes expressing 2 different mutations. Two-day oral administration of 4-PBA to mice homozygous for one of these mutations restored myofiber membrane repair. 4-PBA may hold therapeutic potential for treating a subset of humans with muscular dystrophy due to dysferlin deficiency. |
---|