Cargando…
Estimation of short-lived climate forced sulfur dioxide in Tehran, Iran, using machine learning analysis
This paper presents a time-series analysis of SO(2) air concentration and the effects of particulates (either PM(2.5) and PM(10)) concentrations and meteorological conditions (relative humidity and wind speed) on SO(2) trend in Tehran for the period from 2011 to 2020. The source data were obtained f...
Autores principales: | Borhani, Faezeh, Shafiepour Motlagh, Majid, Rashidi, Yousef, Ehsani, Amir Houshang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741550/ https://www.ncbi.nlm.nih.gov/pubmed/35035281 http://dx.doi.org/10.1007/s00477-021-02167-x |
Ejemplares similares
-
Evaluation of short-lived atmospheric fine particles in Tehran, Iran
por: Borhani, Faezeh, et al.
Publicado: (2022) -
Changes in short-lived climate pollutants during the COVID-19 pandemic in Tehran, Iran
por: Borhani, Faezeh, et al.
Publicado: (2021) -
Current Status and Future Forecast of Short-lived Climate-Forced Ozone in Tehran, Iran, derived from Ground-Based and Satellite Observations
por: Borhani, Faezeh, et al.
Publicado: (2023) -
Tropospheric Ozone in Tehran, Iran, during the last 20 years
por: Borhani, Faezeh, et al.
Publicado: (2021) -
On the predictability of short-lived particulate matter around a cement plant in Kerman, Iran: machine learning analysis
por: Borhani, F., et al.
Publicado: (2022)