Cargando…
Segmentation and classification on chest radiography: a systematic survey
Chest radiography (X-ray) is the most common diagnostic method for pulmonary disorders. A trained radiologist is required for interpreting the radiographs. But sometimes, even experienced radiologists can misinterpret the findings. This leads to the need for computer-aided detection diagnosis. For d...
Autores principales: | Agrawal, Tarun, Choudhary, Prakash |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741572/ https://www.ncbi.nlm.nih.gov/pubmed/35035008 http://dx.doi.org/10.1007/s00371-021-02352-7 |
Ejemplares similares
-
COVID-SegNet: encoder–decoder-based architecture for COVID-19 lesion segmentation in chest X-ray
por: Agrawal, Tarun, et al.
Publicado: (2023) -
FocusCovid: automated COVID-19 detection using deep learning with chest X-ray images
por: Agrawal, Tarun, et al.
Publicado: (2021) -
Dark-Field Chest Radiography Outperforms Conventional Chest Radiography for the Diagnosis and Staging of Pulmonary Emphysema
por: Urban, Theresa, et al.
Publicado: (2023) -
Lung Segmentation using Active Shape Model to Detect the Disease from Chest Radiography
por: Dorri Giv, Masoumeh, et al.
Publicado: (2021) -
Position Classification of the Endotracheal Tube with Automatic Segmentation of the Trachea and the Tube on Plain Chest Radiography Using Deep Convolutional Neural Network
por: Jung, Heui Chul, et al.
Publicado: (2022)