Cargando…
Convolution neural network for the diagnosis of wireless capsule endoscopy: a systematic review and meta-analysis
BACKGROUND: Wireless capsule endoscopy (WCE) is considered to be a powerful instrument for the diagnosis of intestine diseases. Convolution neural network (CNN) is a type of artificial intelligence that has the potential to assist the detection of WCE images. We aimed to perform a systematic review...
Autores principales: | Qin, Kaiwen, Li, Jianmin, Fang, Yuxin, Xu, Yuyuan, Wu, Jiahao, Zhang, Haonan, Li, Haolin, Liu, Side, Li, Qingyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741689/ https://www.ncbi.nlm.nih.gov/pubmed/34426876 http://dx.doi.org/10.1007/s00464-021-08689-3 |
Ejemplares similares
-
Deep Convolutional Neural Network for Ulcer Recognition in Wireless Capsule Endoscopy: Experimental Feasibility and Optimization
por: Wang, Sen, et al.
Publicado: (2019) -
Application of Convolutional Neural Networks for Automated Ulcer Detection in Wireless Capsule Endoscopy Images
por: Alaskar, Haya, et al.
Publicado: (2019) -
Small Bowel Detection for Wireless Capsule Endoscopy Using Convolutional Neural Networks with Temporal Filtering
por: Son, Geonhui, et al.
Publicado: (2022) -
Intelligent Wireless Capsule Endoscopy for the Diagnosis of Gastrointestinal Diseases
por: Mehedi, Ibrahim M., et al.
Publicado: (2023) -
Efficacy of a comprehensive binary classification model using a deep convolutional neural network for wireless capsule endoscopy
por: Kim, Sang Hoon, et al.
Publicado: (2021)