Cargando…
Hermitian–Yang–Mills Connections on Collapsing Elliptically Fibered K3 Surfaces
Let [Formula: see text] be an elliptically fibered K3 surface, admitting a sequence [Formula: see text] of Ricci-flat metrics collapsing the fibers. Let V be a holomorphic SU(n) bundle over X, stable with respect to [Formula: see text] . Given the corresponding sequence [Formula: see text] of Hermit...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741718/ https://www.ncbi.nlm.nih.gov/pubmed/35110958 http://dx.doi.org/10.1007/s12220-021-00808-9 |
Sumario: | Let [Formula: see text] be an elliptically fibered K3 surface, admitting a sequence [Formula: see text] of Ricci-flat metrics collapsing the fibers. Let V be a holomorphic SU(n) bundle over X, stable with respect to [Formula: see text] . Given the corresponding sequence [Formula: see text] of Hermitian–Yang–Mills connections on V, we prove that, if E is a generic fiber, the restricted sequence [Formula: see text] converges to a flat connection [Formula: see text] . Furthermore, if the restriction [Formula: see text] is of the form [Formula: see text] for n distinct points [Formula: see text] , then these points uniquely determine [Formula: see text] . |
---|