Cargando…
Predicting suspended sediment load in Peninsular Malaysia using support vector machine and deep learning algorithms
High loads of suspended sediments in rivers are known to cause detrimental effects to potable water sources, river water quality, irrigation activities, and dam or reservoir operations. For this reason, the study of suspended sediment load (SSL) prediction is important for monitoring and damage miti...
Autores principales: | Essam, Yusuf, Huang, Yuk Feng, Birima, Ahmed H., Ahmed, Ali Najah, El-Shafie, Ahmed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741754/ https://www.ncbi.nlm.nih.gov/pubmed/34997183 http://dx.doi.org/10.1038/s41598-021-04419-w |
Ejemplares similares
-
Predicting streamflow in Peninsular Malaysia using support vector machine and deep learning algorithms
por: Essam, Yusuf, et al.
Publicado: (2022) -
Streamflow classification by employing various machine learning models for peninsular Malaysia
por: AlDahoul, Nouar, et al.
Publicado: (2023) -
Suspended sediment load prediction using long short-term memory neural network
por: AlDahoul, Nouar, et al.
Publicado: (2021) -
Exploring machine learning algorithms for accurate water level forecasting in Muda river, Malaysia
por: Adli Zakaria, Muhamad Nur, et al.
Publicado: (2023) -
Developing machine learning algorithms for meteorological temperature and humidity forecasting at Terengganu state in Malaysia
por: Hanoon, Marwah Sattar, et al.
Publicado: (2021)