Cargando…
Novel ratio-metric features enable the identification of new driver genes across cancer types
An emergent area of cancer genomics is the identification of driver genes. Driver genes confer a selective growth advantage to the cell. While several driver genes have been discovered, many remain undiscovered, especially those mutated at a low frequency across samples. This study defines new featu...
Autores principales: | Sudhakar, Malvika, Rengaswamy, Raghunathan, Raman, Karthik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741763/ https://www.ncbi.nlm.nih.gov/pubmed/34997044 http://dx.doi.org/10.1038/s41598-021-04015-y |
Ejemplares similares
-
Multi-Omic Data Improve Prediction of Personalized Tumor Suppressors and Oncogenes
por: Sudhakar, Malvika, et al.
Publicado: (2022) -
Network-based features enable prediction of essential genes across diverse organisms
por: Azhagesan, Karthik, et al.
Publicado: (2018) -
Machine Learning Applications for Mass Spectrometry-Based Metabolomics
por: Liebal, Ulf W., et al.
Publicado: (2020) -
Comprehensive identification of mutational cancer driver genes across 12 tumor types
por: Tamborero, David, et al.
Publicado: (2013) -
Performance metrics and enabling technologies for nanoplasmonic biosensors
por: Oh, Sang-Hyun, et al.
Publicado: (2018)