Cargando…
Approximate reinforcement learning to control beaconing congestion in distributed networks
In vehicular communications, the increase of the channel load caused by excessive periodical messages (beacons) is an important aspect which must be controlled to ensure the appropriate operation of safety applications and driver-assistance systems. To date, the majority of congestion control soluti...
Autores principales: | Aznar-Poveda, J., García-Sánchez, A.-J., Egea-López, E., García-Haro, J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741791/ https://www.ncbi.nlm.nih.gov/pubmed/34997101 http://dx.doi.org/10.1038/s41598-021-04123-9 |
Ejemplares similares
-
Reinforcement learning and approximate dynamic programming for feedback control
por: Lewis, F, et al.
Publicado: (2013) -
PBQ-Enhanced QUIC: QUIC with Deep Reinforcement Learning Congestion Control Mechanism
por: Zhang, Zhifei, et al.
Publicado: (2023) -
Proactive Congestion Avoidance for Distributed Deep Learning
por: Kang, Minkoo, et al.
Publicado: (2020) -
A tutorial on linear function approximators for dynamic programming and reinforcement learning
por: Geramifard, Alborz, et al.
Publicado: (2013) -
Multi-agent reinforcement learning with approximate model learning for competitive games
por: Park, Young Joon, et al.
Publicado: (2019)