Cargando…
OpenWeedLocator (OWL): an open-source, low-cost device for fallow weed detection
The use of a fallow phase is an important tool for maximizing crop yield potential in moisture limited agricultural environments, with a focus on removing weeds to optimize fallow efficiency. Repeated whole field herbicide treatments to control low-density weed populations is expensive and wasteful....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741824/ https://www.ncbi.nlm.nih.gov/pubmed/34996963 http://dx.doi.org/10.1038/s41598-021-03858-9 |
Sumario: | The use of a fallow phase is an important tool for maximizing crop yield potential in moisture limited agricultural environments, with a focus on removing weeds to optimize fallow efficiency. Repeated whole field herbicide treatments to control low-density weed populations is expensive and wasteful. Site-specific herbicide applications to low-density fallow weed populations is currently facilitated by proprietary, sensor-based spray booms. The use of image analysis for fallow weed detection is an opportunity to develop a system with potential for in-crop weed recognition. Here we present OpenWeedLocator (OWL), an open-source, low-cost and image-based device for fallow weed detection that improves accessibility to this technology for the weed control community. A comprehensive GitHub repository was developed, promoting community engagement with site-specific weed control methods. Validation of OWL as a low-cost tool was achieved using four, existing colour-based algorithms over seven fallow fields in New South Wales, Australia. The four algorithms were similarly effective in detecting weeds with average precision of 79% and recall of 52%. In individual transects up to 92% precision and 74% recall indicate the performance potential of OWL in fallow fields. OWL represents an opportunity to redefine the approach to weed detection by enabling community-driven technology development in agriculture. |
---|