Cargando…
Session interest model for CTR prediction based on self-attention mechanism
Click-through rate prediction, which aims to predict the probability of the user clicking on an item, is critical to online advertising. How to capture the user evolving interests from the user behavior sequence is an important issue in CTR prediction. However, most existing models ignore the factor...
Autores principales: | Wang, Qianqian, Liu, Fang’ai, Zhao, Xiaohui, Tan, Qiaoqiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741903/ https://www.ncbi.nlm.nih.gov/pubmed/34996985 http://dx.doi.org/10.1038/s41598-021-03871-y |
Ejemplares similares
-
A CTR prediction model based on session interest
por: Wang, Qianqian, et al.
Publicado: (2022) -
A New Approach for Advertising CTR Prediction Based on Deep Neural Network via Attention Mechanism
por: Wang, Qianqian, et al.
Publicado: (2018) -
Modality attention fusion model with hybrid multi-head self-attention for video understanding
por: Zhuang, Xuqiang, et al.
Publicado: (2022) -
TSSCM: A synergism-based three-step cascade model for influence maximization on large-scale social networks
por: Zhao, Xiaohui, et al.
Publicado: (2019) -
Personal Interest Attention Graph Neural Networks for Session-Based Recommendation
por: Zhang, Xiangde, et al.
Publicado: (2021)