Cargando…
Channel-independent recreation of artefactual signals in chronically recorded local field potentials using machine learning
Acquisition of neuronal signals involves a wide range of devices with specific electrical properties. Combined with other physiological sources within the body, the signals sensed by the devices are often distorted. Sometimes these distortions are visually identifiable, other times, they overlay wit...
Autores principales: | Fabietti, Marcos, Mahmud, Mufti, Lotfi, Ahmad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741911/ https://www.ncbi.nlm.nih.gov/pubmed/34997378 http://dx.doi.org/10.1186/s40708-021-00149-x |
Ejemplares similares
-
ABOT: an open-source online benchmarking tool for machine learning-based artefact detection and removal methods from neuronal signals
por: Fabietti, Marcos, et al.
Publicado: (2022) -
Religious Fragmentation, Social Identity and Conflict: Evidence from an Artefactual Field Experiment in India
por: Chakravarty, Surajeet, et al.
Publicado: (2016) -
SANTIA: a Matlab-based open-source toolbox for artifact detection and removal from extracellular neuronal signals
por: Fabietti, Marcos, et al.
Publicado: (2021) -
Artefactual origin of biphasic cortical spike-LFP correlation
por: Okun, Michael
Publicado: (2016) -
Physician Behavior under Prospective Payment Schemes—Evidence from Artefactual Field and Lab Experiments
por: Reif, Simon, et al.
Publicado: (2020)