Cargando…

Entropy considerations in improved circuits for a biologically-inspired random pulse computer

We present five novel or modified circuits intended for building a universal computer based on random pulse computing (RPC) paradigm, a biologically-inspired way of computation in which variable is represented by a frequency of a random pulse train (RPT) rather than by a logic state. For the first t...

Descripción completa

Detalles Bibliográficos
Autores principales: Stipčević, Mario, Batelić, Mateja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741937/
https://www.ncbi.nlm.nih.gov/pubmed/34997140
http://dx.doi.org/10.1038/s41598-021-04177-9
Descripción
Sumario:We present five novel or modified circuits intended for building a universal computer based on random pulse computing (RPC) paradigm, a biologically-inspired way of computation in which variable is represented by a frequency of a random pulse train (RPT) rather than by a logic state. For the first time we investigate operation of RPC circuits from the point of entropy. In particular, we introduce entropy budget criterion (EBC) to reliably predict whether it is even possible to create a deterministic circuit for a given mathematical operation and show its relevance to numerical precision of calculations. Based on insights gained from the EBC, unlike in the previous art, where randomness is obtained from electronics noise or a pseudorandom shift register while processing circuitry is deterministic, in our approach both variable generation and signal processing rely on the random flip-flop (RFF) whose randomness is derived from a fundamentally random quantum process. This approach offers an advantage in higher precision, better randomness of the output and conceptual simplicity of circuits.