Cargando…
Contactless facial video recording with deep learning models for the detection of atrial fibrillation
Atrial fibrillation (AF) is often asymptomatic and paroxysmal. Screening and monitoring are needed especially for people at high risk. This study sought to use camera-based remote photoplethysmography (rPPG) with a deep convolutional neural network (DCNN) learning model for AF detection. All partici...
Autores principales: | Sun, Yu, Yang, Yin-Yin, Wu, Bing-Jhang, Huang, Po-Wei, Cheng, Shao-En, Wu, Bing-Fei, Chen, Chun-Chang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741942/ https://www.ncbi.nlm.nih.gov/pubmed/34996908 http://dx.doi.org/10.1038/s41598-021-03453-y |
Ejemplares similares
-
Contactless Vital Signs Monitoring From Videos Recorded With Digital Cameras: An Overview
por: Molinaro, Nunzia, et al.
Publicado: (2022) -
Contactless blood oxygen estimation from face videos: A multi-model fusion method based on deep learning
por: Hu, Min, et al.
Publicado: (2023) -
Novel contactless approach for assessment of venous occlusion plethysmography by video recordings at the green illumination
por: Kamshilin, Alexei A., et al.
Publicado: (2017) -
Assessment of facial video-based detection of atrial fibrillation across human complexion
por: Couderc, Jean-Philippe, et al.
Publicado: (2022) -
Automatic screening of patients with atrial fibrillation from 24-h Holter recording using deep learning
por: Zhang, Peng, et al.
Publicado: (2023)