Cargando…

DUNEScan: a web server for uncertainty estimation in skin cancer detection with deep neural networks

Recent years have seen a steep rise in the number of skin cancer detection applications. While modern advances in deep learning made possible reaching new heights in terms of classification accuracy, no publicly available skin cancer detection software provide confidence estimates for these predicti...

Descripción completa

Detalles Bibliográficos
Autores principales: Mazoure, Bogdan, Mazoure, Alexander, Bédard, Jocelyn, Makarenkov, Vladimir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741961/
https://www.ncbi.nlm.nih.gov/pubmed/34996997
http://dx.doi.org/10.1038/s41598-021-03889-2
Descripción
Sumario:Recent years have seen a steep rise in the number of skin cancer detection applications. While modern advances in deep learning made possible reaching new heights in terms of classification accuracy, no publicly available skin cancer detection software provide confidence estimates for these predictions. We present DUNEScan (Deep Uncertainty Estimation for Skin Cancer), a web server that performs an intuitive in-depth analysis of uncertainty in commonly used skin cancer classification models based on convolutional neural networks (CNNs). DUNEScan allows users to upload a skin lesion image, and quickly compares the mean and the variance estimates provided by a number of new and traditional CNN models. Moreover, our web server uses the Grad-CAM and UMAP algorithms to visualize the classification manifold for the user’s input, hence providing crucial information about its closeness to skin lesion images  from the popular ISIC database. DUNEScan is freely available at: https://www.dunescan.org.