Cargando…
Phenethylamine is a substrate of monoamine oxidase B in the paraventricular thalamic nucleus
Monoamine oxidase (MAO) is a key enzyme responsible for the degradation of neurotransmitters and trace amines. MAO has two subtypes (MAO-A and MAO-B) that are encoded by different genes. In the brain, MAO-B is highly expressed in the paraventricular thalamic nucleus (PVT); however, its substrate in...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8742005/ https://www.ncbi.nlm.nih.gov/pubmed/34996979 http://dx.doi.org/10.1038/s41598-021-03885-6 |
Sumario: | Monoamine oxidase (MAO) is a key enzyme responsible for the degradation of neurotransmitters and trace amines. MAO has two subtypes (MAO-A and MAO-B) that are encoded by different genes. In the brain, MAO-B is highly expressed in the paraventricular thalamic nucleus (PVT); however, its substrate in PVT remains unclear. To identify the MAO-B substrate in PVT, we generated Maob knockout (KO) mice and measured five candidate substrates (i.e., noradrenaline, dopamine, 3-methoxytyramine, serotonin, and phenethylamine [PEA]) by liquid chromatography tandem mass spectrometry. We showed that only PEA levels were markedly elevated in the PVT of Maob KO mice. To exclude the influence of peripheral MAO-B deficiency, we developed brain-specific Maob KO mice, finding that PEA in the PVT was increased in brain-specific Maob KO mice, whereas the extent of PEA increase was less than that in global Maob KO mice. Given that plasma PEA levels were elevated in global KO mice, but not in brain–specific KO mice, and that PEA passes across the blood–brain barrier, the substantial accumulation of PEA in the PVT of Maob KO mice was likely due to the increase in plasma PEA. These data suggest that PEA is a substrate of MAO-B in the PVT as well as other tissues. |
---|